

 Linked Data Services for Internet of Things

Jaroslav Pullmann, Dr. Yehya Mohamad
User-Centered Ubiquitous Computing department

Fraunhofer Institute for Applied Information Technology FIT
Sankt Augustin, Germany

{jaroslav.pullmann, yehya.mohamad}@fit.fraunhofer.de

Abstract — In this paper we present the open source
“LinkSmart Resource Framework” allowing developers to
incorporate heterogeneous data sources and physical devices
through a generic service facade independent of the data model,
persistence technology or access protocol. We particularly consi-
der the integration and maintenance of Linked Data, a widely
accepted means for expressing highly-structured, machine reada-
ble (meta)data graphs. Thanks to its uniform, technology-
agnostic view on data, the framework is expected to increase the
ease-of-use, maintainability and usability of software relying on
it. The development of various technologies to access, interact
with and manage data has led to rise of parallel communities
often unaware of alternatives beyond their technology bounda-
ries. Systems for object-relational mapping, NoSQL document or
graph-based Linked Data storage usually exhibit complex,
vendor-specific programming interfaces. Paraphrasing the re-
source concept underlying the RESTful architecture of the Web,
we attempt to identify and generalize the main data management
tasks in terms of common resource operations.

Keywords— Data management; Linked data; Internet of
Things; OSGi

I. INTRODUCTION

 The evolution of the World Wide Web from a human-dri-
ven, document-centric web to a network of interconnected
devices, services and self-descriptive data has stimulated the
development of various technologies to access, interact with
and manage this data. Communities emerged to apply, enhance
and promote their respective technology stack. They often act
in parallel, unaware of alternatives beyond their technology
boundaries. As part of the open-source LinkSmart project [1]
our work on the “LinkSmart Resource Framework” attempts to
identify and generalize the main data management tasks and
prevalent concepts regardless of the actual data model, persis-
tence technology etc. With a clear focus on “data services”, it
converges a variety of technologies ranging from Object-
relational mapping, NoSQL document storage up to graph-
based Linked Data being handled uniformly by a generic set of
services. In the following, we first introduce the rationale,
design considerations and general architecture underlying the
LinkSmart Resource Framework. We then describe in detail
the Metadata extension and conclude with some examples of
how this new development is being used in EU funded research
projects GreenCom and ALMANAC.

II. LINKSMART RESOURCE FRAMEWORK

A. Rationale

The Java Data Objects standard [2] specifies an interface to
persist Java objects in a technology agnostic way. The related
Java Persistence specification [3] concentrates on object-rela-
tional mapping only. We consider both specifications techno-
logy-driven, overly detailed with regards to common data ma-
nagement tasks, while missing some important high-level
functionality. The rationale underlying the LinkSmart Resour-
ce Platform is to define a generic, uniform interface for
management, retrieval and processing of data while
maintaining a technology and implementation agnostic facade.
It does not aim to supersede dedicated persistence interfaces
and systems, but to proxy and enhance client interactions with
them by means of a homogeneous service layer. Similar to
“hybrid storage systems” like Virtuoso Universal Server [4] it
shares the idea of transcending technology boundaries within a
unified data management hub.
Adopting Fielding’s concept of Web resource [5] we define
managed resource as the central entity of our framework. It is
a uniquely identified endpoint with an arbitrary number of
discrete, digital representations. A resource can then be mani-
pulated and accessed via a uniform service interface by ex-
changing resource operation requests. One major contribution
of our work is in the analysis and provision of a generic
taxonomy of operations for resource management, access and
retrieval in terms of Java application programming interfaces
(APIs). On top of this native, uniform API custom mappings
to remote protocols has been defined. Due to their contractual
nature, RESTful interactions are often subject to controversial
discussions. There is no normative way to map individual
constituents of the HTTP interface – request method (verb),
request URI, set of HTTP headers, query and form parameters
or a message payload – to data operations. Provision of a tool
base for defining such a homogeneous remote APIs for
RESTful operations on arbitrary resources is a further
contribution of our work.
Management of Linked Data [6] was in the past performed in
a proprietary, application-dependent way until recently the
Linked Data Platform 1.0 Standard [7] sought for alignment
with the RESTful principles of the Web as well to standardize

International Conference on Recent Advances in Computer Systems (RACS 2015)

© 2016. The authors - Published by Atlantis Press 151

HTTP-based application integration patterns for read-write
Linked Data. An original contribution of our work is in the
seamless integration of Linked Data management into the Re-
source Management framework, the provision of a native Java
API and an extensible set of services to facilitate integration
and processing of Linked Data.

B. Design considerations

The following high-level considerations lead the design of our
framework:

Uniform: The uniformity and simplicity of Web's HTTP inter-
face has significantly contributed to its success and unprece-
dented growth. Ease-of-use, learnability and maintainability of
the platform should be based on the definition of a set of
simple, generic service interfaces and concepts.

Protocol-agnostic: The whole range of synchronous service in-
teractions should additionally be modeled as asynchronous
message calls. Such the platform will offer for both, tight syn-
chronous and loosely-coupled asynchronous integration scena-
rios and allow for binding the uniform interface to a variety of
communication protocols (HTTP, MQTT etc.)

Service-oriented: Service oriented architectures (SOA) focus in
contrast to the object-oriented paradigm (OOP) on functional
singletons, services exchanging light-weight, "passive" data
objects. The functionality has been engineered out of heavy-
weight objects into a manageable set of dedicated services.

Representation-based: In compliance to the service-oriented ar-
chitecture, data structures exchanged by the system should
omit any business logic and be deliberately simple, optimized
for serialization in widely adopted textual formats like JSON,
XML, Turtle [18] etc.

Resource-driven: Data manipulation and retrieval is implemen-
ted by adopting a RESTful paradigm. The internally main-
tained state (managed resource) is updated by the exchange of
resource representations and the application of a uniform
command set.

Domain-agnostic: In order to increase reusability and prevent
the provision of custom APIs for every particular domain the
interfaces should be designed as generic and domain agnostic
as possible, while allowing for definition, maintenance and
querying of arbitrarily complex data models.

Standards-compliant: The risk of creating a proprietary solu-
tion should be minimized by compliance to standards. Related
knowledge, support and open source software tools are re-used
where possible.

C. Architecture

As depicted in Figure 1 the LinkSmart Resource Framework
(c) builds upon the OSGi runtime (a), an environment im-
plementing the Open Services Gateway initiative (OSGi) spe-
cification for dynamic, service-oriented component systems in
Java [8]. The runtime automatically handles the life-cycle, hot
deployment and dependency resolution of components.

Figure 1. LinkSmart Resource Framework outline

The OSGi Service Registry acts as the central integration hub
for publication and resolution of services. Every service
provided by a component is registered in terms of exposed
interfaces and descriptive properties. Clients may filter this
public API, obtain and use a service binding to an abstract
contract, while the service provider remains transparent. This
architecture strongly encourages a separation of interface and
implementation bundles and facilitates the creation of exten-
sible loosely-coupled systems.
The LinkSmart Resource Framework relies on a number of
standard OSGi and 3rd party services (b), for example the Ser-
vice Component Runtime, Configuration Admin, Event Admin
and JPA Service. It further defines a set of services and conc-
epts for technology-agnostic resource management along a
data processing pipeline (d). A Java API (1) and remote REST
API (3) are defined for this purpose.
It further acknowledges the fact, that some of the managed
artifacts may contain interpretable code. State Chart XML [9]
for example, is an XML-based formalism to declaratively ex-
press control logic. Such documents are per default persisted
within a native XML database (f). Given an appropriate
execution environment (e), clients might load and instantiate
them to become “live” custom services interacted via a native
Java or Remote Procedure Call (RPC) interfaces (2). The
different request semantics are reflected in the prefix of the
remote API address:

Table 1. Remote address mapping

Path Description
/resource/... Root of RESTful operations, a uniform

interface applied to any resource type.
/service/... Root for invocation of RPC-services

(via overloaded POST).

152

Both, the management and execution aspects of resources, as
detailed out in the following sections, rely on the concept of a
processing pipeline. Being themselves services of type Re-
sourceManagementPipeline and ResourceExecu-
tionPipeline they define the series of steps within the
processing of inbound resource requests and the association of
handler services to a particular stage.
The appropriate pipeline and handler association is assembled
by querying the OSGi service registry via LDAP search filters
[8]. They attempt to match the public interfaces and
registration properties of the services with properties of the
request. Alternative handlers are prioritized according to their
service.ranking property.

III. Resource Management Pipeline

As described in Figure 2 the life-cycle, retrieval and querying
of the managed resources is governed by a configurable “data
processing pipeline”. Clients might exchange textual resource
representation via the remote REST interface (a). These are
parsed into a lightweight object representation according to
the request URL, their media type and further HTTP headers
by an appropriate RepresentationParser service (1).
Equally, on resource retrieval, a RepresentationSeria-
lizer service is resolved from the OSGi service registry by
matching the request properties and the pipeline configuration.
While of general purpose, not restricted to remote interactions,
these services are compliant with the Entity Provider speci-
fication of the Java API for RESTful Web Services (JAX-RS)
[11] allowing for a seamless interoperability.

Figure 2. Data Processing Pipeline

Clients may alternatively exchange plain data objects via na-
tive Java interfaces (b). In line with our design principles,
these objects are considered light-weight binary data represen-
tations and a part of the API. They should not contain any
application logic beyond accessor and standard methods
(toString, equals, hashCode). Regardless of the
entry point the client request is unambiguously captured and
mapped onto an instance of the ResourceRequest class,
for example CreateRequest, ListRequest or
FilterRequest etc. Within the further step a predefined or
the most appropriate DataValidator service is selected
and applied to check for consistency and validity of the input
data (2). Finally a ResourceHandler service executes the
requested operation, such as creating a new resource instance
or synthesizing a representation view of a requested resource.
We have translated the concept of inline JAX-RS Resource
methods into a layer of fine-granular services implementing a
singular resource operation logic. They share the benefits of
the standard OSGi ecosystem, are easy to discover and reuse
via their explicit public API.
The default processing pipeline might easily be extended by
intermediate ETL steps, allowing for data extraction, transfor-
mation or merging etc.

A. Resource Execution Pipeline

Internally managed programmatic resources might contain
interpretable code or queries. Given a secure runtime these re-
sources, once uploaded, could dynamically extend the func-
tional range of the platform. We are currently performing
research on requirements and design of such a secure execu-
tion sandbox, considering e.g. processual aspects (code review
and manual approval by human curator), code inspection and
annotation aspects (permission-governed execution). Experi-
mental support is provided for persistent, parametrized data
queries that provide a high-level contract and entry point to
managed resources. Based on deployed queries clients might
create alternative APIs. As described below, our framework
uses persistent SPARQL queries [12] for internal management
of LinkedData.

IV. METADATA FRAMEWORK

The LinkSmart Metadata Framework (a) as depicted in Figure
3 extends the Resource Framework by capabilities of mana-
ging and querying “semantic resources”. These are graph-
based descriptions of identifiable entities, their attributes and
relationships compatible with the RDF data model [13].

153

Figure 3. LinkSmart Metadata Framework outline

The framework acts as a transparent proxy to conventional
SPARQL endpoints (b) compatible with the SPARQL 1.1
protocol (5) [11]. It considerably augments the typical repo-
sitory functions and interface coverage by providing native
Java interfaces (1) and remote HTTP APIs for execution of
SPARQL statements (2) and RESTful data manipulation (3).
The underlying data model is defined by the RDF standard
[13] – a labeled, directed multi-graph consisting of series of
ternary statements (triples):

 <subject><predicate><object>

Subject nodes and predicate edges are identified by Unicode-
aware Internationalized Resource Identifiers (IRIs) [15],
object values are either IRIs or literals. A variety of concrete
syntaxes exist to generate an RDF representation, among
others the normative RDF 1.1 XML Syntax [15], and the
popular JSON-based Serialization for Linked Data (JSON-
LD) [17]. A shortened example using the human-readable
RDF 1.1 Turtle notation to describe an energy consumption
sensor in the GreenCom project is given below:

res:2F15BC001D024544 a gc:EnergyConsumptionSensor ;
 rdf:value "8665"^^xsd:double ;
 rdfs:label "Computer + Monitor" ;
 rdfs:comment "Consumption of the PC equipment(Wh)";
 gc:installation res:85f4d922d87646934.

RDF is well suited for tasks of knowledge representation and
sharing. Usage of resolvable HTTP URLs for nodes enabled
the rise of the Linked Data paradigm, where descriptions of a
particular semantic resource might be retrieved and aggregated
from distributed repositories such as Linking Open Data
cloud1. The W3C Linked Data Platform [19] specification
recently standardized the HTTP API for management of
read-write Linked Data. Nevertheless implementers of this
standard are challenged by some peculiarities of the RDF data
model.

1 http://lod-cloud.net/

A. Validation

Unlike other technologies (SQL DDL, XML Schema) RDF is
missing a standard schema language for constraint-checking
and validation. As appointed in [20] the related RDF Schema
[21] and Web Ontology Language [22] standards specify dec-
larative constraints on classes and properties, that may help to
infer implicit knowledge, but they are inappropriate to express
imperative validity criteria. Due to the open-world assumption
that underlies RDF contradicting statements will rarely result
in an inconsistent model and thus lead to an error.
There are two levels of RDF validation:

 Validation of the textual representation: considering
for example the default RDF/XML syntax, one may
test whether the document is well-formed and valid
with regards to the specification criteria [16] and an
optional, custom XML schema.

 Validation of the abstract model with regards to sche-
ma-derived or custom constraints: SPARQL ASK
queries are well suited to express the validity criteria
by a graph pattern within the WHERE clause to
determine the data conformance by programmatic
means. The query returns true, for a valid (matching)
graph input, false otherwise.

Ryman proposed in [23] a constraints vocabulary to specify
the “shape” of RDF resources, i.e. an enumeration of triples
the resource is expected to contain and the integrity constraints
those triples should satisfy. This work has recently been sub-
mitted for standardization as W3C Shapes Constraint Lan-
guage (SHACL) [24]. We intend to provide a support for
SHACL once the specification reached a stable state.

B. Contextualization

The plain RDF data model is missing the concept of a context,
a means to link individual triple statements to their originating
graph and provenance. Further, since RDF is based on a voca-
bulary of global identifiers distinguished contexts are needed
to delimit scopes in which the asserted triples apply.
Programmatic support for context maintenance was introduced
by SPARQL named graphs2 . A set of statements might be
asserted to or retrieved from the default graph or a particular
named graph within the underlying RDF Dataset. The Linked
Data Platform Container is the entity for contextualized data
management in LDP. It is a surface abstraction that needs to
be aligned with the notion of context in RDF Datasets [25] and
the various RDF Dataset languages TriG [26] and N-Quads
[27]. Potential nesting of LDP Containers (hierarchical arran-
gement of graphs) needs to be explicitly modelled, for exam-
ple via a containment relationship.

2 http://www.w3.org/TR/sparql11-query#namedGraphs

154

C. Semantic resource handling

In contrast to file-based, document-oriented or relational data-
base systems which share an implicit concept of entity
boundaries (like a file, XML root element, JSON root object
or SQL table row etc.) there is no simple mean, in graph-based
RDF models, to define the boundaries of a particular sub-
graph (i.e. a semantic resource). The available options are:

1. Usage of one named graph per resource to provide a con-
text to and consolidate all statements about a single entity. The
drawback of this approach is a missing support within the RDF
abstract model itself (only available at serialization and mani-
pulation level), high fragmentation of the RDF data set and a
difficulty to link and query.

2. Usage of intermediate blank nodes3 to express boundaries,
context, provenance etc. Drawback: this solution would require
a proprietary data schema and framework implementing such a
blank node traversal and would be incompatible with most of
the existing vocabularies.

3. Usage of SPARQL 1.1. Query and Update languages to
purposefully construct and manipulate entity sub-graphs.
Drawback: development of a management framework and an
initial configuration effort to set-up the required queries and
updates. Such a programmatic handling of graph fragments
may optionally build on top of an additional named graph
organization 1).

The latter solution was selected for implementation in our
framework, since it employs a standard tool chain and is not li-
mited to a particular data schema. There are generic Resour-
ceHandler services provided to handle different types of
operations. The default ReadRequestHandler for example
extracts a flat (one-level) graph representation of an entity:

CONSTRUCT { ?resource ?predicate ?object }
WHERE { ?resource ?predicate ?object }

The default ListRequestHandler retrieves only the anno-
tation properties of resources within the underlying graph:

PREFIX rdf: <http://www.w3.org/.../22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/.../rdf-schema#>
CONSTRUCT {
 ?resource rdf:type ?type .
 ?resource rdf:value ?value .
 ?resource rdfs:label ?label .
 ?resource rdfs:comment ?comment .
} WHERE {
 OPTIONAL { ?resource rdf:type ?type }
 OPTIONAL { ?resource rdf:value ?value }
 OPTIONAL { ?resource rdfs:label ?label }
 OPTIONAL { ?resource rdfs:comment ?comment }
}

User defined SPARQL resources might be uploaded to the
platform and made available for custom resource handling
thanks to the above mentioned Execution Pipeline.

3 http://www.w3.org/TR/rdf11-concepts/#section-blank-nodes

V. LINKED DATA SERVICE EXAMPLES

The development of the LinkSmart Metadata Framework was
driven and supported by the FP7 EU research projects Green-
Com and ALMANAC.

A. GreenCom Installation Management

The SmartGrid project GreenCom4 aims at supporting demand
response operations to stabilize the low-power power grid
challenged by consumption peaks and fluctuating renewable
energy sources. Wireless sensor and actuation networks for fo-
cused monitoring of energy load, environmental conditions
and appliance control were deployed in more than 25 houses.
Installation details – sensor equipment, its capabilities and
associated appliances etc. – are collaboratively maintained
within highly structured wiki pages.
Editable webpages represent a natural user interface to
manage and perceive textual information. On the other hand,
the cloud-based warehouse used for data persistence and eva-
luation unavoidably duplicates some of the meta-data. The
RDF data model is well suited to capture this kind of
structured, potentially incomplete data. Its built-in elimination
of duplicate values and powerful query capabilities of
SPARQL motivated the decision to (semi)automatically map
the human-centric textual information onto an integrated RDF
data set as depicted in Figure 4. Likewise recent observation
values received from the meters are published and seamlessly
integrated into the same data set.
An RDF representation of the GreenCom domain not only hel-
ped us to homogenize the meta-data and increase its quality. It
enabled queries on the structure and characteristics of the
considered micro-grids. Given query, for example, selects
identifiers of all houses attached to given power line (radial)
and their corresponding heat pump consumption sensor:

PREFIX rdf:<http://www.w3.org/.../22-rdf-syntax-ns#>
Ontology definitions, concepts
PREFIX def: <urn:gc:def:>
Domain resources, individuals
PREFIX res: <urn:gc:res:>
SELECT ?h ?hpcs
WHERE {
 ?h rdf:type def:House; def:location res:idRadial1.
 # Identify heat pump somewhere in respective house
 ?hp rdf:type def:HeatPump;
 def:location* ?h;
 def:property ?hpc .
 # Select sensor observing its consumption
 ?hpc rdf:type def:PowerConsumption .
 ?hpcs def:observes ?hpc .
}

4 http://www.greencom-project.eu/

155

Figure 4. GreenCom metadata integration.

B. ALMANAC Iot Resource Metadata

The ALMANAC project5 focuses on the development of an
innovative Smart City Platform (SCP) to collect, aggregate,
and analyze sensor data transmitted across dynamically fede-
rated networks. A service layer abstracting access to and con-
trol of heterogeneous devices along with a Service Develop-
ment Kit is intended to stimulate proliferation of innovative
Smart City Applications. ALMANAC's Semantic Representa-
tion Layer component largely builds upon the Metadata
Framework and provides RDF descriptions of Smart City
resources. Next to usage of established vocabularies new mo-
dels are being developed to e.g. capture common network
capabilities for automated reliability assessment and routing,
to semantically annotate data streams and observations. Our
demonstrator showcasing demand-driven garbage collection
maintains the descriptions of approximately 60.000 waste
bins, distributed within the city of Turin. The so called “Driver
App” computes an optimal collection route and visualizes
garbage containers, that were reported full by evaluating the
static resource annotations (bin type, location) and transient
measurement values (fill level).

VI. CONCLUSION

In this paper we presented our initial work on a generic frame-
work for handling of data resources transcending the tradi-
tional technology boundaries. Thanks to its protocol-agnostic,
uniform interface and a highly extensible service-oriented
architecture it is expected to ease the integration of hete-
rogeneous data sources and devices within the IoT context.
Our future work will focus on further usability evaluation of
this approach with developers, alignment with relevant stan-
dards and public release of the code as part of the LinkSmart
Middleware [1].

VII. ACKNOWLEDGMENT

The presented research work received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7 /
2007-2013) projects GreenCom and ALMANAC under grant
agreement n.609081.

5 www.almanac-project.eu/

VIII. REFERENCES
[1] LinkSmart, “LinkSmart Middleware,” https://www.linksmart.eu, 2015,

accessed: October 2015.

[2] JSR 243, “Java Data Objects 3.1”, http://svn.apache.org/viewvc/db/jdo-
/trunk/specification/OOO/JDO-3.1.pdf?view=co, 2015, accessed: Octo-
ber 2015.

[3] JSR 338, “Java Persistence 2.1”, https://www.jcp.org/en/jsr/de-
tail?id=338, 2013, accessed: October 2015.

[4] OpenLink Software, “Virtuoso Universal Server”, http://virtuoso.open-
linksw.com/, 2015, accessed: October 2015.

[5] Fielding, Roy Thomas. Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of
California, Irvine, 2000.

[6] Linked Data, “W3C LinkedData Overview”, http://www.w3.org/stan-
dards/semanticweb/data, 2015, accessed: October 2015.

[7] LDP, “Linked Data Platform 1.0”, http://www.w3.org/TR/ldp/, 2015,
accessed: October 2015.

[8] OSGi Alliance, “OSGi Core Release 6 Specification”, 2014, https://os-
gi.org/download/r6/osgi.core-6.0.0.pdf, accessed: October 2015.

[9] SCXML, "State Chart XML (SCXML): State Machine Notation for
Control Abstraction", http://www.w3.org/TR/scxml/, 2015, accessed:
October 2015.

[10] IETF, “Lightweight Directory Access Protocol (LDAP): String Repre-
sentation of Search Filters”, http://tools.ietf.org/search/rfc4515, 2006,
accessed: October 2015.

[11] JSR 339, “JAX-RS 2.0: The Java API for RESTful Web Services”,
https://jcp.org/en/jsr/detail?id=339, 2014, accessed: October 2015.

[12] SPARQL, "SPARQL 1.1 Query Language", http://www.w3.org/-
TR/sparql11-query/, 2013, accessed: October 2015

[13] RDF Model, "RDF 1.1 Concepts and Abstract Syntax", http://www.-
w3.org/TR/rdf11-concepts/, 2014, accessed: October 2015.

[14] SPARQL Protocol, “SPARQL 1.1 Protocol”, http://www.w3.org/TR-
/sparql11-protocol/, 2013, accessed: October 2015.

[15] IRI, "Internationalized Resource Identifiers (IRIs)", https://tools.ie-
tf.org/html/rfc3987, 2005, accessed: October 2015.

[16] RDF XML, "RDF 1.1 XML Syntax", http://www.w3.org/TR/rdf-syntax-
grammar/, 2014, accessed: October 2015.

[17] JSON-LD, "JSON-LD 1.0. A JSON-based Serialization for Linked Da-
ta", http://www.w3.org/TR/json-ld/, 2014, accessed: October 2015.

[18] Turtle, "RDF 1.1 Turtle. Terse RDF Triple Language", http://www.w-
3.org/TR/turtle/, 2014, accessed: October 2015.

[19] LDP, "Linked Data Platform 1.0", http://www.w3.org/TR/ldp/, 2015,
accessed: October 2015.

[20] Ryman, Arthur. Linked Data Interfaces. Define REST API contracts for
RDF resource representations. http://www.ibm.com/developerworks/ra-
tional/library/linked-data-oslc-resource-shapes/, 2013, accessed: October
2015.

[21] RDF Schema, "RDF Schema 1.1", http://www.w3.org/TR/rdf-schema/,
2014, accessed: October 2015.

[22] OWL, "OWL 2. Web Ontology Language Document Overview (Second
Edition)", http://www.w3.org/TR/owl2-overview/, 2012, accessed:
October 2015.

[23] Resource Shape, "Resource Shape 2.0. W3C Member Submission.",
http://www.w3.org/Submission/shapes/, 2014, accessed: October 2015.

[24] SHACL, "Shapes Constraint Language" (SHACL), http://www.w3.org/-
TR/shacl/, 2015, accessed: October 2015.

[25] Dataset Semantics, "RDF 1.1: On Semantics of RDF Datasets",
http://www.w3.org/TR/rdf11-datasets/, 2014, accessed: October 2015.

[26] TriG, "RDF 1.1 TriG. RDF Dataset Language", http://www.w3.org/TR/-
trig/, 2014, accessed: October 2015.

[27] N-Quads, "RDF 1.1 N-Quads. A line-based syntax for RDF datasets",
http://www.w3.org/TR/n-quads/, 2014, accessed: October 2015.

156

