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Abstract — In this paper we present the open source 
“LinkSmart Resource Framework” allowing developers to 
incorporate heterogeneous data sources and physical devices 
through a generic service facade independent of the data model, 
persistence technology or access protocol. We particularly consi-
der the integration and maintenance of Linked Data, a widely 
accepted means for expressing highly-structured, machine reada-
ble (meta)data graphs. Thanks to its uniform, technology-
agnostic view on data, the framework is expected to increase the 
ease-of-use, maintainability and usability of software relying on 
it. The development of various technologies to access, interact 
with and manage data has led to rise of parallel communities 
often unaware of alternatives beyond their technology bounda-
ries. Systems for object-relational mapping, NoSQL document or 
graph-based Linked Data storage usually exhibit complex, 
vendor-specific programming interfaces. Paraphrasing the re-
source concept underlying the RESTful architecture of the Web, 
we attempt to identify and generalize the main data management 
tasks in terms of common resource operations.  

Keywords— Data management; Linked data; Internet of 
Things;  OSGi 

I.  INTRODUCTION 

  The evolution of the World Wide Web from a human-dri-
ven, document-centric web to a network of interconnected 
devices, services and self-descriptive data has stimulated the 
development of various technologies to access, interact with 
and manage this data. Communities emerged to apply, enhance 
and promote their respective technology stack. They often act 
in parallel, unaware of alternatives beyond their technology 
boundaries. As part of the open-source LinkSmart project [1] 
our work on the “LinkSmart Resource Framework” attempts to 
identify and generalize the main data management tasks and 
prevalent concepts regardless of the actual data model, persis-
tence technology etc. With a clear focus on “data services”, it 
converges a variety of technologies ranging from Object-
relational mapping, NoSQL document storage up to graph-
based Linked Data being handled uniformly by a generic set of 
services. In the following, we first introduce the rationale, 
design considerations and general architecture underlying the 
LinkSmart Resource Framework. We then describe in detail 
the Metadata extension and conclude with some examples of 
how this new development is being used in EU funded research 
projects GreenCom and ALMANAC. 

II. LINKSMART RESOURCE FRAMEWORK 

A. Rationale 

The Java Data Objects standard [2] specifies an interface to 
persist Java objects in a technology agnostic way. The related 
Java Persistence specification [3] concentrates on object-rela-
tional mapping only. We consider both specifications techno-
logy-driven, overly detailed with regards to common data ma-
nagement tasks, while missing some important high-level 
functionality. The rationale underlying the LinkSmart Resour-
ce Platform is to define a generic, uniform interface for 
management, retrieval and processing of data while 
maintaining a technology and implementation agnostic facade. 
It does not aim to supersede dedicated persistence interfaces 
and systems, but to proxy and enhance client interactions with 
them by means of a homogeneous service layer. Similar to 
“hybrid storage systems” like Virtuoso Universal Server [4] it 
shares the idea of transcending technology boundaries within a 
unified data management hub.  
Adopting Fielding’s concept of Web resource [5] we define 
managed resource as the central entity of our framework.  It is 
a uniquely identified endpoint with an arbitrary number of 
discrete, digital representations. A resource can then be mani-
pulated and accessed via a uniform service interface by ex-
changing resource operation requests. One major contribution 
of our work is in the analysis and provision of a generic 
taxonomy of operations for resource management, access and 
retrieval in terms of Java application programming interfaces 
(APIs). On top of this native, uniform API custom mappings 
to remote protocols has been defined. Due to their contractual 
nature, RESTful interactions are often subject to controversial 
discussions. There is no normative way to map individual 
constituents of the HTTP interface – request method (verb), 
request URI, set of HTTP headers, query and form parameters 
or a message payload – to data operations. Provision of a tool 
base for defining such a homogeneous remote APIs for 
RESTful operations on arbitrary resources is a further 
contribution of our work.  
Management of Linked Data [6] was in the past performed in 
a proprietary, application-dependent way until recently the 
Linked Data Platform 1.0 Standard [7] sought for alignment 
with the RESTful principles of the Web as well to standardize 
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HTTP-based application integration patterns for read-write 
Linked Data. An original contribution of our work is in the 
seamless integration of Linked Data management into the Re-
source Management framework, the provision of a native Java 
API and an extensible set of services to facilitate integration 
and processing of Linked Data. 

B. Design considerations 

The following high-level considerations lead the design of our 
framework: 
 
Uniform: The uniformity and simplicity of Web's HTTP inter-
face has significantly contributed to its success and unprece-
dented growth. Ease-of-use, learnability and maintainability of 
the platform should be based on the definition of a set of 
simple, generic service interfaces and concepts. 

Protocol-agnostic: The whole range of synchronous service in-
teractions should additionally be modeled as asynchronous 
message calls. Such the platform will offer for both, tight syn-
chronous and loosely-coupled asynchronous integration scena-
rios and allow for binding the uniform interface to a variety of 
communication protocols (HTTP, MQTT etc.) 

Service-oriented: Service oriented architectures (SOA) focus in 
contrast to the object-oriented paradigm (OOP) on functional 
singletons, services exchanging light-weight, "passive" data 
objects. The functionality has been engineered out of heavy-
weight objects into a manageable set of dedicated services. 

Representation-based: In compliance to the service-oriented ar-
chitecture, data structures exchanged by the system should 
omit any business logic and be deliberately simple, optimized 
for serialization in widely adopted textual formats like JSON, 
XML, Turtle [18] etc. 

Resource-driven: Data manipulation and retrieval is implemen-
ted by adopting a RESTful paradigm. The internally main-
tained state (managed resource) is updated by the exchange of 
resource representations and the application of a uniform 
command set. 

Domain-agnostic: In order to increase reusability and prevent 
the provision of custom APIs for every particular domain the 
interfaces should be designed as generic and domain agnostic 
as possible, while allowing for definition, maintenance and 
querying of arbitrarily complex data models. 

Standards-compliant: The risk of creating a proprietary solu-
tion should be minimized by compliance to standards. Related 
knowledge, support and open source software tools are re-used 
where possible. 

C. Architecture 

As depicted in Figure 1 the LinkSmart Resource Framework 
(c) builds upon the OSGi runtime (a), an environment im-
plementing the Open Services Gateway initiative (OSGi) spe-
cification for dynamic, service-oriented component systems in 
Java [8]. The runtime automatically handles the life-cycle, hot 
deployment and dependency resolution of components.  

 

Figure 1. LinkSmart Resource Framework outline 

 
The OSGi Service Registry acts as the central integration hub 
for publication and resolution of services. Every service 
provided by a component is registered in terms of exposed 
interfaces and descriptive properties. Clients may filter this 
public API, obtain and use a service binding to an abstract 
contract, while the service provider remains transparent. This 
architecture strongly encourages a separation of interface and 
implementation bundles and facilitates the creation of exten-
sible loosely-coupled systems. 
The LinkSmart Resource Framework relies on a number of 
standard OSGi and 3rd party services (b), for example the Ser-
vice Component Runtime, Configuration Admin, Event Admin 
and JPA Service. It further defines a set of services and conc-
epts for technology-agnostic resource management along a 
data processing pipeline (d). A Java API (1) and remote REST 
API (3) are defined for this purpose.  
It further acknowledges the fact, that some of the managed 
artifacts may contain interpretable code. State Chart XML [9] 
for example, is an XML-based formalism to declaratively ex-
press control logic. Such documents are per default persisted 
within a native XML database (f). Given an appropriate 
execution environment (e), clients might load and instantiate 
them to become “live” custom services interacted via a native 
Java or Remote Procedure Call (RPC) interfaces (2). The 
different request semantics are reflected in the prefix of the 
remote API address:  

Table 1. Remote address mapping 

Path Description 
/resource/... Root of RESTful operations, a uniform 

interface applied to any resource type.
/service/... Root for invocation of RPC-services 

(via overloaded POST). 
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Both, the management and execution aspects of resources, as 
detailed out in the following sections, rely on the concept of a 
processing pipeline. Being themselves services of type Re-
sourceManagementPipeline and ResourceExecu-
tionPipeline they define the series of steps within the 
processing of inbound resource requests and the association of 
handler services to a particular stage.  
The appropriate pipeline and handler association is assembled 
by querying the OSGi service registry via LDAP search filters 
[8]. They attempt to match the public interfaces and 
registration properties of the services with properties of the 
request. Alternative handlers are prioritized according to their 
service.ranking property. 

III. Resource Management Pipeline 

As described in Figure 2 the life-cycle, retrieval and querying 
of the managed resources is governed by a configurable “data 
processing pipeline”.  Clients might exchange textual resource 
representation via the remote REST interface (a). These are 
parsed into a lightweight object representation according to 
the request URL, their media type and further HTTP headers 
by an appropriate RepresentationParser service (1).  
Equally, on resource retrieval, a RepresentationSeria-
lizer service is resolved from the OSGi service registry by 
matching the request properties and the pipeline configuration.  
While of general purpose, not restricted to remote interactions, 
these services are compliant with the Entity Provider speci-
fication of the  Java API for RESTful Web Services (JAX-RS) 
[11] allowing for a seamless interoperability.  
 

 

Figure 2. Data Processing Pipeline 

Clients may alternatively exchange plain data objects via na-
tive Java interfaces (b). In line with our design principles, 
these objects are considered light-weight binary data represen-
tations and a part of the API. They should not contain any 
application logic beyond accessor and standard methods 
(toString, equals, hashCode). Regardless of the 
entry point the client request is unambiguously captured and 
mapped onto an instance of the ResourceRequest class, 
for example CreateRequest, ListRequest or  
FilterRequest etc. Within the further step a predefined or 
the most appropriate DataValidator service is selected 
and applied to check for consistency and validity of the input 
data (2). Finally a ResourceHandler service executes the 
requested operation, such as creating a new resource instance 
or synthesizing a representation view of a requested resource. 
We have translated the concept of inline JAX-RS Resource 
methods into a layer of fine-granular services implementing a 
singular resource operation logic. They share the benefits of 
the standard OSGi ecosystem, are easy to discover and reuse 
via their explicit public API.  
The default processing pipeline might easily be extended by 
intermediate ETL steps, allowing for data extraction, transfor-
mation or merging etc. 
 

A. Resource Execution Pipeline 

Internally managed programmatic resources might contain 
interpretable code or queries. Given a secure runtime these re-
sources, once uploaded, could dynamically extend the func-
tional range of the platform. We are currently performing 
research on requirements and design of such a secure execu-
tion sandbox, considering e.g. processual aspects (code review 
and manual approval by human curator), code inspection and 
annotation aspects (permission-governed execution).  Experi-
mental support is provided for persistent, parametrized data 
queries that provide a high-level contract and entry point to 
managed resources. Based on deployed queries clients might 
create alternative APIs. As described below, our framework 
uses persistent SPARQL queries [12] for internal management 
of LinkedData.  

IV. METADATA FRAMEWORK 

The LinkSmart Metadata Framework (a) as depicted in Figure 
3 extends the Resource Framework by capabilities of mana-
ging and querying “semantic resources”. These are graph-
based descriptions of identifiable entities, their attributes and 
relationships compatible with the RDF data model [13].  
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Figure 3. LinkSmart Metadata Framework outline 

The framework acts as a transparent proxy to conventional 
SPARQL endpoints (b) compatible with the SPARQL 1.1 
protocol (5) [11]. It considerably augments the typical repo-
sitory functions and interface coverage by providing native 
Java interfaces (1) and remote HTTP APIs for execution of 
SPARQL statements (2) and RESTful data manipulation (3). 
The underlying data model is defined by the RDF standard 
[13] – a labeled, directed multi-graph consisting of series of 
ternary statements (triples): 
 
 <subject><predicate><object>  
  
Subject nodes and predicate edges are identified by Unicode-
aware Internationalized Resource Identifiers (IRIs) [15], 
object values are either IRIs or literals. A variety of concrete 
syntaxes exist to generate an RDF representation, among 
others the normative RDF 1.1 XML Syntax [15], and the 
popular JSON-based Serialization for Linked Data (JSON-
LD) [17]. A shortened example using the human-readable 
RDF 1.1 Turtle notation to describe an energy consumption 
sensor in the GreenCom project is given below:  
 
res:2F15BC001D024544 a gc:EnergyConsumptionSensor ; 
 rdf:value "8665"^^xsd:double ; 
 rdfs:label "Computer + Monitor" ;   
 rdfs:comment "Consumption of the PC equipment(Wh)"; 
 gc:installation  res:85f4d922d87646934. 
 
RDF is well suited for tasks of knowledge representation and 
sharing. Usage of resolvable HTTP URLs for nodes enabled 
the rise of the Linked Data paradigm, where descriptions of a 
particular semantic resource might be retrieved and aggregated 
from distributed repositories such as Linking Open Data 
cloud1.  The W3C Linked Data Platform [19] specification 
recently   standardized the HTTP API for management of 
read-write Linked Data. Nevertheless implementers of this 
standard are challenged by some peculiarities of the RDF data 
model. 

                                                           
1 http://lod-cloud.net/ 

A. Validation 

Unlike other technologies (SQL DDL, XML Schema) RDF is 
missing a standard schema language for constraint-checking 
and validation. As appointed in [20] the related RDF Schema 
[21] and Web Ontology Language [22] standards specify dec-
larative constraints on classes and properties, that may help to 
infer implicit knowledge, but they are inappropriate to express 
imperative validity criteria. Due to the open-world assumption 
that underlies RDF contradicting statements will rarely result 
in an inconsistent model and thus lead to an error.  
There are two levels of RDF validation:  

 Validation of the textual representation: considering 
for example the default RDF/XML syntax, one may 
test whether the document is well-formed and valid 
with regards to the specification criteria [16] and an 
optional, custom XML schema.  

 Validation of the abstract model with regards to sche-
ma-derived or custom constraints: SPARQL ASK 
queries are well suited to express the validity criteria 
by a graph pattern within the WHERE clause to 
determine the data conformance by programmatic 
means. The query returns true, for a valid (matching) 
graph input, false otherwise. 

 
Ryman proposed in [23] a constraints vocabulary to specify 
the “shape” of RDF resources, i.e. an enumeration of triples 
the resource is expected to contain and the integrity constraints 
those triples should satisfy. This work has recently been sub-
mitted for standardization as W3C Shapes Constraint Lan-
guage (SHACL) [24]. We intend to provide a support for 
SHACL once the specification reached a stable state. 
 

B. Contextualization 

The plain RDF data model is missing the concept of a context, 
a means to link individual triple statements to their originating 
graph and provenance. Further, since RDF is based on a voca-
bulary of global identifiers distinguished contexts are needed 
to delimit scopes in which the asserted triples apply. 
Programmatic support for context maintenance was introduced 
by SPARQL named graphs2 . A set of statements might be 
asserted to or retrieved from the default graph or a particular 
named graph within the underlying RDF Dataset. The Linked 
Data Platform Container is the entity for contextualized data 
management in LDP. It is a surface abstraction that needs to 
be aligned with the notion of context in RDF Datasets [25] and 
the various RDF Dataset languages TriG [26] and N-Quads 
[27]. Potential nesting of LDP Containers (hierarchical arran-
gement of graphs) needs to be explicitly modelled, for exam-
ple via a containment relationship.  

                                                           
2 http://www.w3.org/TR/sparql11-query#namedGraphs 
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C. Semantic resource handling 

In contrast to file-based, document-oriented or relational data-
base systems which share an implicit concept of entity 
boundaries (like a file, XML root element, JSON root object 
or SQL table row etc.) there is no simple mean, in graph-based 
RDF models, to define the boundaries of a particular sub-
graph (i.e. a semantic resource). The available options are: 
 
1. Usage of one named graph per resource to provide a con-
text to and consolidate all statements about a single entity. The 
drawback of this approach is a missing support within the RDF 
abstract model itself (only available at serialization and mani-
pulation level), high fragmentation of the RDF data set and a 
difficulty to link and query. 

2. Usage of intermediate blank nodes3 to express boundaries, 
context, provenance etc. Drawback: this solution would require 
a proprietary data schema and framework implementing such a 
blank node traversal and would be incompatible with most of 
the existing vocabularies. 

3. Usage of SPARQL 1.1. Query and Update languages to 
purposefully construct and manipulate entity sub-graphs. 
Drawback: development of a management framework and an 
initial configuration effort to set-up the required queries and 
updates. Such a programmatic handling of graph fragments 
may optionally build on top of an additional named graph 
organization 1).  

The latter solution was selected for implementation in our 
framework, since it employs a standard tool chain and is not li-
mited to a particular data schema. There are generic  Resour-
ceHandler services provided to handle different types of 
operations. The default ReadRequestHandler for example 
extracts a flat (one-level) graph representation of an entity: 

CONSTRUCT { ?resource ?predicate ?object }  
WHERE { ?resource ?predicate ?object } 

The default ListRequestHandler retrieves only the anno-
tation properties of resources within the underlying graph: 

PREFIX rdf: <http://www.w3.org/.../22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/.../rdf-schema#>  
CONSTRUCT {  
  ?resource rdf:type ?type .  
  ?resource rdf:value ?value .  
  ?resource rdfs:label ?label .  
  ?resource rdfs:comment ?comment .  
} WHERE {  
  OPTIONAL { ?resource rdf:type ?type }  
  OPTIONAL { ?resource rdf:value ?value }  
  OPTIONAL { ?resource rdfs:label ?label }  
  OPTIONAL { ?resource rdfs:comment ?comment }  
} 

User defined SPARQL resources might be uploaded to the 
platform and made available for custom resource handling 
thanks to the above mentioned Execution Pipeline.  

                                                           
3 http://www.w3.org/TR/rdf11-concepts/#section-blank-nodes 

V. LINKED DATA SERVICE EXAMPLES  

The development of the LinkSmart Metadata Framework was 
driven and supported by the FP7 EU research projects Green-
Com and ALMANAC.  

A. GreenCom Installation Management 

The SmartGrid project GreenCom4 aims at supporting demand 
response operations to stabilize the low-power power grid 
challenged by consumption peaks and fluctuating renewable 
energy sources. Wireless sensor and actuation networks for fo-
cused monitoring of energy load, environmental conditions 
and appliance control were deployed in more than 25 houses. 
Installation details – sensor equipment, its capabilities and 
associated appliances etc. – are collaboratively maintained 
within highly structured wiki pages.  
Editable webpages represent a natural user interface to 
manage and perceive textual information. On the other hand, 
the cloud-based warehouse used for data persistence and eva-
luation unavoidably duplicates some of the meta-data. The 
RDF data model is well suited to capture this kind of 
structured, potentially incomplete data. Its built-in elimination 
of duplicate values and powerful query capabilities of 
SPARQL motivated the decision to (semi)automatically map 
the human-centric  textual information onto an integrated RDF 
data set as depicted in Figure 4. Likewise recent observation 
values received from the meters are published and seamlessly 
integrated into the same data set. 
An RDF representation of the GreenCom domain not only hel-
ped us to homogenize the meta-data and increase its quality. It 
enabled queries on the structure and characteristics of the 
considered micro-grids.  Given query, for example, selects 
identifiers of all houses attached to given power line (radial) 
and their corresponding heat pump consumption sensor:  
 
PREFIX rdf:<http://www.w3.org/.../22-rdf-syntax-ns#> 
# Ontology definitions, concepts 
PREFIX def: <urn:gc:def:> 
# Domain resources, individuals 
PREFIX res: <urn:gc:res:> 
SELECT ?h ?hpcs 
WHERE { 
  ?h rdf:type def:House; def:location res:idRadial1. 
  # Identify heat pump somewhere in respective house 
  ?hp rdf:type def:HeatPump;  
      def:location* ?h;  
      def:property ?hpc . 
  # Select sensor observing its consumption 
  ?hpc rdf:type def:PowerConsumption . 
  ?hpcs def:observes ?hpc .     
} 

                                                           
4 http://www.greencom-project.eu/ 
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Figure 4. GreenCom metadata integration. 

 

B. ALMANAC Iot Resource Metadata 

The ALMANAC project5 focuses on the development of an 
innovative Smart City Platform (SCP) to collect, aggregate, 
and analyze sensor data transmitted across dynamically fede-
rated networks. A service layer abstracting access to and con-
trol of heterogeneous devices along with a Service Develop-
ment Kit is intended to stimulate proliferation of innovative 
Smart City Applications. ALMANAC's Semantic Representa-
tion Layer component largely builds upon the Metadata 
Framework and provides RDF descriptions of Smart City 
resources. Next to usage of established vocabularies new mo-
dels are being developed to e.g. capture common network 
capabilities for automated reliability assessment and routing, 
to semantically annotate data streams and observations. Our 
demonstrator showcasing demand-driven garbage collection 
maintains the descriptions of approximately 60.000 waste 
bins, distributed within the city of Turin. The so called “Driver 
App” computes an optimal collection route and visualizes 
garbage containers, that were reported full by evaluating the 
static resource annotations (bin type, location) and transient 
measurement values (fill level).  

VI. CONCLUSION 

In this paper we presented our initial work on a generic frame-
work for handling of data resources transcending the tradi-
tional technology boundaries. Thanks to its protocol-agnostic, 
uniform interface and a highly extensible service-oriented 
architecture it is expected to ease the integration of hete-
rogeneous data sources and devices within the IoT context. 
Our future work will focus on further usability evaluation of 
this approach with developers, alignment with relevant stan-
dards and public release of the code as part of the LinkSmart 
Middleware [1]. 
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