
Document version: 1.0  Submission date: August 31 2015 

 

 

 

 

 

 

 
 
 

(FP7 609081) 
 

 

D7.3.1 Cloud based APIs for Smart City applications - 
Developers Guide 1 

 

Submission Date August 31 2015 – Version 1.0 
  

  

 

Published by the ALMANAC Consortium  

 

Dissemination Level: Public 

  
 
 
 
 
 
 

Project co-funded by the European Commission within the 7th Framework Programme 

Objective ICT-2013.1.4: A reliable, smart and secure Internet of Things for Smart Cities 

Legal Notice 

The information in this document is subject to change without notice. 

The Members of the ALMANAC Consortium make no warranty of any kind with regard to this document, including, but 
not limited to, the implied warranties of merchantability and fitness for a particular purpose. The Members of the 
ALMANAC Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or 
consequential damages in connection with the furnishing, performance, or use of this material. 

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely the views of its 
authors. The European Commission is not liable for any use that may be made of the information contained therein. 

 

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 2 of 30 Submission date: August 31 2015 

 

 

 

Document control page 

Document file: D7.3.1 Cloud based APIs Developers Guide 1.docx 

Document version: 1.0  

Document owner: Matts Ahlsén (CNET) 

 

Work package: WP7 – Platform Integration 

Task: T7.4 

Deliverable type: R 

Document status:  approved by the document owner for internal review 

  approved for submission to the EC 

 

Document history: 

 

Version Author(s) Date Summary of changes made 

0.1 Matts Ahlsén (CNET) 2015-05-05 Initial structure 

0.4 Matts Ahlsén, Mathias Axling  

(CNET) 

2015-06-20 API structure and tools draft 

0.5 Dario Bonino (ISMB), José Ángel 

Carvajal Soto, Jaroslav Pullman 

(FIT) 

2015-08-03 API details for data fusion, event 

processing and semantic resources 

0.6 Mathias Axling, Matts Ahlsen 

(CNET) 

2015-08-10 OGC details 

0.7 Mathias Axling, Matts Ahlsen 

(CNET) 

2015-08-17 API details: provisioning 

0.8 Mathias Axling (CNET) 2015-08-20 Developers tutorial 

0.9 Mathias Axling (CNET), Matts 

Ahlsen (CNET) 

2015-08-31 Version for internal review 

1.0 Mathias Axling (CNET), Matts 

Ahlsen (CNET) 

2015-09-02 Final version for submission 

 

 

 

Internal review history: 

 

Reviewed by Date Summary of comments 

Thomas Gilbert (ALEX) 2015-08-31 Accepted with comments 

Marco Jahn (FIT) 2015-08-31 Accepted with minor comments 

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 3 of 30 Submission date: August 31 2015 

 

 

 

Index: 

List of Figures ............................................................................................... 4 

Terminology ................................................................................................. 5 

Executive summary ...................................................................................... 6 

1. Introduction ............................................................................................ 7 

1.1 Purpose, context and scope of this deliverable .......................................... 7 
1.2 Background .......................................................................................... 7 
1.3 Method and tools ................................................................................... 7 

2. ALMANAC Component view ...................................................................... 8 

3. Developer tools ..................................................................................... 10 

3.1 Almanac Data Fusion Language .............................................................. 10 
3.2 Swagger .............................................................................................. 11 
3.3 OGC SensorThings API .......................................................................... 12 

 Introduction ................................................................................. 12 
 OGC SensorThings Data Model........................................................ 13 
 Thing ........................................................................................... 14 
 Location ....................................................................................... 14 
 HistoricalLocation .......................................................................... 14 
 Datastream .................................................................................. 14 
 Sensor ......................................................................................... 14 
 ObservedProperty ......................................................................... 14 
 Observation ................................................................................. 14 

 FeatureOfInterest .................................................................... 14 
3.4 The Smart City Ontology ....................................................................... 14 

4. Developer APIs ...................................................................................... 16 

4.1 Cloud API organization .......................................................................... 16 
4.2 Smart City Resource Library Services API ................................................ 16 
4.3 Historical Data API ................................................................................ 17 
4.4 Live Data API ....................................................................................... 18 

 Direct querying ............................................................................. 18 
 Subscription to events ................................................................... 19 

4.5 Data Fusion Services API ....................................................................... 19 
4.6 Provisioning API ................................................................................... 20 
4.7 Management API .................................................................................. 21 

5. Development Tutorial ............................................................................ 22 

5.1 Finding types in the Smart City Ontology ................................................. 22 
5.2 Finding resources ................................................................................. 24 
5.3 Querying resources ............................................................................... 25 
5.4 Defining data fusion queries ................................................................... 26 

6. Future work ........................................................................................... 29 

7. References ............................................................................................ 30 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 4 of 30 Submission date: August 31 2015 

 

 

 

List of Figures 

Figure 1: Component diagram of the ALMANAC platform .................................................... 8 
Figure 2: Multiple federations between ALMANAC Platform Instances. .................................. 9 
Figure 3. A generic stream processing block. .................................................................. 10 
Figure 4. Sample chain (hourly average). ....................................................................... 10 
Figure 5. Single block chain. ......................................................................................... 11 
Figure 6. Single block chain notation. ............................................................................. 11 
Figure 7: ALMANAC APIs in the Swagger UI editor ........................................................... 12 
Figure 8: OGS SensorThings Static Model ....................................................................... 13 
Figure 9: Ontology for the waste management use case ................................................... 15 
Figure 10: A Thing representation with JSON-LD annotation. ............................................ 20 
Figure 11: Triples extracted from the JSON-LD Thing representation. ................................. 20 
Figure 12: SPARQL Query for types of waste bins. ........................................................... 22 
Figure 13: SPARQL Query response. .............................................................................. 23 
Figure 14: View of the WasteBin class hierarchy in WebProtege. ........................................ 24 
Figure 15: The response from a SCRLS API query. ........................................................... 25 
Figure 16: The response from the Historical Data API....................................................... 26 
Figure 17. Bad smell detection query with event streams and threshold filters .................... 27 
Figure 18. Odour detection chain definition in JSON. ........................................................ 28 
  

file:///C:/Users/Maria%20Teresa/Dropbox/ALMANAC/2nd%20year/Deliverables/August%202015/D7.3.1%20Cloud%20based%20APIs%20for%20Smart%20City%20applications%20-%20Developers%20Guide%201%20v1.0.docx%23_Toc429153353
file:///C:/Users/Maria%20Teresa/Dropbox/ALMANAC/2nd%20year/Deliverables/August%202015/D7.3.1%20Cloud%20based%20APIs%20for%20Smart%20City%20applications%20-%20Developers%20Guide%201%20v1.0.docx%23_Toc429153355
file:///C:/Users/Maria%20Teresa/Dropbox/ALMANAC/2nd%20year/Deliverables/August%202015/D7.3.1%20Cloud%20based%20APIs%20for%20Smart%20City%20applications%20-%20Developers%20Guide%201%20v1.0.docx%23_Toc429153356
file:///C:/Users/Maria%20Teresa/Dropbox/ALMANAC/2nd%20year/Deliverables/August%202015/D7.3.1%20Cloud%20based%20APIs%20for%20Smart%20City%20applications%20-%20Developers%20Guide%201%20v1.0.docx%23_Toc429153357
file:///C:/Users/Maria%20Teresa/Dropbox/ALMANAC/2nd%20year/Deliverables/August%202015/D7.3.1%20Cloud%20based%20APIs%20for%20Smart%20City%20applications%20-%20Developers%20Guide%201%20v1.0.docx%23_Toc429153358
file:///C:/Users/Maria%20Teresa/Dropbox/ALMANAC/2nd%20year/Deliverables/August%202015/D7.3.1%20Cloud%20based%20APIs%20for%20Smart%20City%20applications%20-%20Developers%20Guide%201%20v1.0.docx%23_Toc429153360
file:///C:/Users/Maria%20Teresa/Dropbox/ALMANAC/2nd%20year/Deliverables/August%202015/D7.3.1%20Cloud%20based%20APIs%20for%20Smart%20City%20applications%20-%20Developers%20Guide%201%20v1.0.docx%23_Toc429153361


ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 5 of 30 Submission date: August 31 2015 

 

 

 

Terminology 

ALMANAC 

Platform 

The ALMANAC Platform comprises a set of software components, guidelines, 

constraints, best practices, etc. that allow the development of Internet of 

Things applications for smart cities. 

ALMANAC 

Platform 

Instance 

A deployment of the ALMANAC platform. Depending on the choice of 

deployment this may comprise only a subset of the platform components. 

E.g. in some cases it may be sufficient to run an instance of SCRAL while in 

other cases only the Virtualization Layer and the Cloud-based APIs may be 

needed. 

Capillary 

Network 

Capillary Networks are flexible and autonomous communication networks 

normally used to locally collect information from sensors and actuators in the 

smart city. Examples of capillary networks include short-range networks 

based on Wireless M-Bus or DLMS-Cosem e.g. for utility metering (gas, 

water, electricity), collection of waste management data, pollution and traffic 

control sensors, smart lighting sensor, heating control sensors, etc. 

Cloud-

based API 

Cloud-based APIs are a set of services that provide access to the ALMANAC 

platform for developers of smart city applications. These services can be 

accessed over the network through REST interfaces. 

ETSI M2M A standard defining M2M communication and platforms provided by ETSI. The 

basic concept of the standard is the Store and Share of data coming from 

smart devices. Data is stored and then shared with the Apps by the M2M 

Platform with standard APIs (httpREST based). 

Federation Federation describes the inter-operation between different ALMANAC platform 

instances (and external nodes) through a shared communication 

infrastructure. Each node (federate) in such a distributed system is an 

autonomous instance of the ALMANAC platform implementing a minimal set 

of components to enable communication. Further, each node manages access 

to its resources and services through access control policies. 

IoT-ARM The IoT Architectural Reference Model (IoT ARM) provides a collection of 

generic architectural concepts and constructs considered applicable to IoT 

system architectures. The IoT ARM does not say how to build IoT systems, it 

is a tool box of concepts, models and recommendations for the domain of IoT 

systems and their architectures. 

IoTWorld 

Gateway 

An IoTWorld Gateway is a software component that provides a logical 

interface towards an IoTWorld (domain). The IoTWorld gateway exposes a 

number of (IoT) Entities and provides a high-level API for communicating 

with this part of the physical world. 
 

Machine-2-

Machine 

(M2M) 

M2M describes the ability of two devices to communicate with each other 

without human intervention through wired or wireless network and often 

through a M2M Platform. M2M communication is a prerequisite for the 

Internet of Things. 

OGC The Open Geographical Consortium, a (de facto) standards consortium for the 

promotion of standards for geospatial data interoperability.  

LinkSmart 

Middleware 

The LinkSmart Open Source Middleware was originally developed within 

the Hydra EU project for Networked Embedded Systems, allowing developers 

to incorporate heterogeneous physical devices into their applications through 

easy-to-use web services for controlling any device.  

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 6 of 30 Submission date: August 31 2015 

 

 

 

Executive summary 

This report describes the subset of ALMANAC platform APIs to be deployed for Cloud access. The 

Cloud-based APIs are a set of external APIs to be used by Smart City applications and the developers 
of such applications. The Cloud-Based APIs rely on the services exposed by the ALMANAC platform 

components – which are more generic in nature - and expose a view of the ALMANAC system suitable 
for development of Smart City applications. This deliverable provides short descriptions of the tools 

and interfaces avaliable to developers aiming to build smart city applications using the ALMANAC 

platform. The document is primarily a guide to developers; extensive descriptions of the interfaces 
and tools are provided are provided in other deliverables in the ALMANAC project.  



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 7 of 30 Submission date: August 31 2015 

 

 

 

1. Introduction 

1.1 Purpose, context and scope of this deliverable 

This deliverable describes the current state of the Cloud based APIs and provides short descriptions 

of the tools and interfaces avaliable to developers aiming to build smart city applications using the 
ALMANAC platform. The document is primarily a guide to developers; extensive descriptions of the 

interfaces and tools are provided elsewhere. The chapters on developer tools and developer APIs 

provide a background to the tutorial. Not all parts of the Cloud APIs are ready at this stage, an updated 
version will be provided in D7.3.2 ”Cloud based API Developers Guide 2”. 

1.2 Background 

The Cloud-based APIs are a set of external APIs to be used by Smart City applications and the 
developers of such applications. The Cloud-Based APIs rely on the services exposed by the ALMANAC 

platform components – which are more generic in nature - and expose a view of the ALMANAC system 
suitable for development of Smart City applications. It is accessible from any system in the LinkSmart 

middleware domain or from mobile or web applications, abstracting the distributed nature of the 

ALMANAC Platform and the interfaces of the specific ALMANAC components.  

The functionality of the Cloud-Based APIs will have an emphasis on finding resources, requesting and 

subscribing to data, and aggregation of data. Most of the data related services exposed by the Cloud 
Based APIs are handled by by the Virtualization Layer, which is exposed directly to the external 

applications. It connects the components of an ALMANAC Platform as well as federated ALMANAC 

platforms, making ALMANAC components and federations appear as a unified service to external 
applications providing support in, 

     Combining services of several ALMANAC Platform components to provide a single service, e.g. 

for querying. 

     Finding registered services and resources.  

     Requesting and subscribing to ALMANAC data. 

     Transformation of payload formats and adaptation to different communication protocols  

The Cloud-based APIs will also provide management services, such as: 

     Provisioning resources and devices to be used in the Smart City applications. 

     Managing metadata for domain entities and data derived from complex event processing. 

     Handling access control, such as granting and revoking application or user access to a specific 

resource and granting access to delegate access to a specific resource. 

The subset of Cloud Services implemented will be based on requirements derived from activities in 

WP8 Applications Definition, Development and Evaluation.  

1.3 Method and tools 

Existing frameworks and standards have been used where possible. The Cloud based APIs are 

designed to expose a comprehensive view of the platform for developers while minimizing the 
adaptation between the Cloud based APIs and the ALMANAC Platform components that realize the API 

functionality. The ALMANAC project has chosen to use the Swagger API design and documentation 
environment1, which will allow developers to inspect the interfaces and create client code in different 

languages.  

                                           
1 http://swagger.io/specification/ 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 8 of 30 Submission date: August 31 2015 

 

 

 

2. ALMANAC Component view  

This chapter gives an overview of the different components of the ALMANAC platform, including their 

functionality, interfaces, and interactions. This chapter is not necessary knowledge for an application 

developer, but may provide a better understanding of the platform. The overall component diagram 
of the ALMANAC SCP is outlined in Figure 1. 

 

Figure 1: Component diagram of the ALMANAC platform 

The ALMANAC platform is intended to be a middleware hosting multiple forms of applications; this 

function is also reflected in the list of its components. The main component subsets are:  

 Cloud-based APIs, define a set of external APIs to be used by Smart City applications and by 

the developers of such applications.  

 The Virtualization Layer: a set of components subset that abstracts from specific Smart City 

resources to virtual entities and APIs, easily accessible by Smart City applications,  

 Semantic Representation Framework: exploits Smart City vocabularies, ontologies and 

metadata, supporting the virtualization and semantic processing of resources.  

 The Data Management Framework: enables storage, caching and querying of collected 

Smart City resource data, as well as data fusion and event management.  

 The Smart City Resource Adaptation Layer: the components that provide uniform access to 

heterogeneous devices, over multiple protocols while also enabling standards-based 
interoperability with M2M networks.  

 Security and Policy Framework: the components that protect the privacy of stakeholders in a 

transparent way across the platform.  



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 9 of 30 Submission date: August 31 2015 

 

 

 

 
 

 

Figure 2: Multiple federations between ALMANAC Platform Instances. 

An Almanac Platform Instance is a deployment of the ALMANAC platform. Depending on the choice of 

deployment this may comprise only a subset of the platform components. An ALMANAC Federation 

describes the inter-operation between different ALMANAC platform instances through a shared 
communication infrastructure. The Virtualization Layer delegates calls across platform instances in a 

federation, alleviating the need for users of the Cloud Based API to deal with the distributed nature of 
an ALMANAC Federation. 

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 10 of 30 Submission date: August 31 2015 

 

 

 

3. Developer tools 

3.1 Almanac Data Fusion Language 

The Data Fusion Language (DFL) is designed to replace the writing of data fusion queries in specific 

Complex Event Processing (CEP) languages. The DFL exploits the conceptual block-based 
representation of CEP queries defines in spChains (Bonino et al., 2012-1). Such a representation, and 

model, exploits the typical query pattern associated to complex stream operations, to decouple low-

level CEP query writing from high-level definition of processing tasks. Query composition, in particular, 
is tackled with a block composition approach, in some aspects very similar to well-known block-based 

programming paradigms such as in Scratch (Maloney et al., 2010) or in well-established processing 
tools, for example, LabView,2  Simulink.3  In such a way, complex CEP query writing is mapped to 

simpler block interconnection while keeping the processing efficiency almost unchanged. 

A stream processing block is “a (software) component taking one or more event streams in input and 
generating one or more event streams as output” (Bonino et al., 2013). The output and input streams 

are correlated by means of a processing function (i.e., a CEP query), which, in general, is not linear 
(e.g., threshold) and/or with memory (e.g., a moving average). 

A stream processing block (see Figure 3) has a set of input ports, and a set of output ports, identified 

by unique port identifiers. 

 

 

Figure 3. A generic stream processing block. 

 

Every port can handle a specific type of event, that is, it has an associated data type that 

shall match the type of events received (generated) in input (output). In the Almanac 

DFL, these datatypes correspond to those allowed within the OGC SensorThings API 

candidate standard (Liang et al., 2015). A set of constant parameters can, furthermore, 

be defined to affect/tune the inner block functionality (i.e., the generated CEP query), for 

example, values, window lengths, operating modes (see the example given in Figure 4). 

 

 

Figure 4. Sample chain (hourly average). 

The ALMANAC Data Fusion Language is purposely designed to be easy to handle, and to manipulate, 
by system integrators and advanced users. As such, it exploits representation formats, which are 

                                           
2 http://www.ni.com/labview/i/ 
3 http://www.mathworks.it/products/simulink/  

http://www.ni.com/labview/i/
http://www.mathworks.it/products/simulink/


ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 11 of 30 Submission date: August 31 2015 

 

 

 

gaining momentum in the ever-widening community of web-based mash-uppers, developers and 
integrators. In particular, chains in the DFL are defined exploiting a JavaScript Object Notation format, 

which can easily be exploited in graphical configuration UIs (planned in ALMANAC, too). Figure 5Figure 

5 and Figure 6 Figure 6 report a very simple chain definition involving one block, one data source and 
one data drain. 

 

 

Figure 5. Single block chain. 

 

 

Figure 6. Single block chain notation. 

The ALMANAC Data Fusion Language is described in detail in ID6.2.2 Data Fusion Language and 

Prototype 2. 

3.2 Swagger 

Swagger is a specification for documenting and defining REST APIs  (URL, method, and representation)  

in a language-agnostic, implemetation-independent way. Similar to a WSDL description of a web 

service, the swagger specification of a REST API may be used to inspect the endpoints, methods and 
formats of the API and generate both server and client code. 

{ 

  "chains" : [ 

    { 

      "id": "fill_level_sub_sampling", 

      "blocks" : [ 

   { 

     "id" : "last_01af", 

     "function" :"last", 

     "params" : [ 

       { 

  "name" : "window", 

  "value" : "1", 

  "uom" : "h" 

       }, 

       { 

  "name" : "mode", 

  "value" : "batch" 

       } 

     ] 

   } 

      ], 

      "input": { 

       "blockId": "last_01af", 

       "port": "in", 

       "id": "in" 

   }, 

      "output": { 

   "blockId": "last_01af", 

   "port": "out", 

   "id": "out" 

      } 

    } 

  ] 

} 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 12 of 30 Submission date: August 31 2015 

 

 

 

The swagger specifiction is supported by an ecosystem of tools. Swagger definitions may be written 
or inspected using the Swagger UI editor (see Figure 7). The Swagger Codegen tool may used to 

generate code, or Swagger definitions may be generated from existing REST APIs.  

 

Figure 7: ALMANAC APIs in the Swagger UI editor  

To start using the Cloud based APIs, the Swagger UI tool can be used to explore the APIs and use 
them in the design phase. Then use the Swagger Codegen tools to generate client libraries for the 

desired platform and language. The Swagger Codegen tools have support for a number of platforms, 
frameworks and languages including dotNET, Java, Python, Swift, Javascript and Nodejs. Swagger 
descriptions of the Cloud based APIs4 will be made available for developers. 

3.3 OGC SensorThings API 

The OGC SensorThings API is an open and unified way to interconnect Internet of Things devices, 

data, and applications over the Web. In the ALAMANC project, this standard has been used by the 

platform instance components. Where the OGC SensorThings API Data Model is appropriate, the Cloud 
Based APIs also use the OGC SensorThings Data Model, JSON format, and the Sensing Profile API 

according to (Liang, et al. 2015). 

 Introduction 

The OGC SensorThings API provides an open and unified way to interconnect Internet of Things 
devices, data, and applications over the Web. The OGC SensorThings API is an open standard: non-

proprietary, platform independent, and perpetual royalty-free. Although it is a new standard, it builds 

on a rich set of proven-working and widely-adopted open standards, such as Web protocols and the 
OGC Sensor Web Enablement (SWE) standards, including the ISO/OGC Observation and Measurement 

data model (OGC and ISO 19156:2011). As such, the OGC SensorThings API is extensible and can be 
applied to both simple and complex use cases. 

The OGC SensorThings API data model consists of two parts: the Sensing profile and the Tasking 

profile. The Sensing profile provides functions similar to the OGC Sensor Observation Service (SOS) 
and the Tasking profile will provide functions similar to the OGC Sensor Planning Service (SPS). The 

main difference between the SensorThings API and the OGC SOS and SPS is that the SensorThings 

                                           
4 The current version can be found at https://fit-bscw.fit.fraunhofer.de/bscw/bscw.cgi/d44048537/20150519-cloud-api.yaml. 

https://fit-bscw.fit.fraunhofer.de/bscw/bscw.cgi/d44048537/20150519-cloud-api.yaml


ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 13 of 30 Submission date: August 31 2015 

 

 

 

API is designed specifically for resource-constrained IoT devices and the Web developer community. 
As a result, the SensorThings API follows REST principles as well as the use of an efficient JSON 

encoding, and the use of the flexible OASIS OData protocol and URL conventions. 

 

 OGC SensorThings Data Model 

 

 

As already mentioned, the OGC SensorThings API data model consists of the Sensing profile and the 
Tasking profile. 

The Sensing profile allows IoT devices and applications to CREATE, READ, UPDATE, and DELETE (i.e., 
HTTP POST, GET, PATCH, and DELETE) IoT data and metadata in a SensorThings service. Managing 

and retrieving observations and metadata from IoT sensor systems is one of the most common use 

cases. As a result, the Sensing profile is designed based on the ISO/OGC Observation and 
Measurement (O&M) model (OGC and ISO 19156:2011). 

The key to the model is that an Observation is modelled as an act that produces a result whose value 
is an estimate of a property of the observation target or FeatureOfInterest. An Observation instance 

is classified by its event time (e.g., resultTime and phenonmenonTime), FeatureOfInterest, 
ObservedProperty, and the procedure used (often a Sensor). 

Moreover, Things are also modeled in the SensorThings API. Further the geographical Locations of 

Things are useful in almost every application and as a result they are included as well. 

   
Figure 8: OGS SensorThings Static Model 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 14 of 30 Submission date: August 31 2015 

 

 

 

In the Sensing profile, a Thing has Locations and HistoricalLocations. A Thing also can have multiple 
Datastreams. A Datastream is a collection of Observations grouped by the same ObservedProperty 

and Sensor. An Observation is an event performed by a Sensor that produces a result whose value is 

an estimate of an ObservedProperty of the FeatureOfInterest. 

 Thing 

The OGC SensorThings API follows the ITU-T definition, i.e., with regard to the Internet of Things, a 
thing is an object of the physical world (physical things) or the information world (virtual things) that 

is capable of being identified and integrated into communication networks (ITU-T Y.2060]) 

 Location 

The Location entity locates the Thing or the Things it is associated with. A Thing’s Location entity is 

defined as the last known location of the Thing. 

 HistoricalLocation 

A Thing’s HistoricalLocation entity set provides the current (i.e. last known) and previous locations of 
the Thing with their time. 

 Datastream  

A Datastream groups a collection of Observations and the Observations in a Datastream measure the 
same ObservedProperty and are produced by the same Sensor 

 Sensor 

A Sensor is an instrument that observes a property or phenomenon with the goal of producing an 

estimate of the value of the property. 

 ObservedProperty 

An ObservedProperty specifies the phenomenon of an Observation. 

 Observation 

An Observation is an act of measuring or otherwise determining the value of a property (OGC and ISO 

19156:2011). 

 FeatureOfInterest 

An Observation results in a value being assigned to a phenomenon. The phenomenon is a property of 

a feature, the latter being the FeatureOfInterest of the Observation (OGC and ISO 19156:2001). In 
the context of the Internet of Things, many Observations’ FeatureOfInterest can be the Location of 

the Thing. For example, the FeatureOfInterest of a wifi-connect thermostat can be the Location of the 
thermostat (i.e. the living room where the thermostat is located in). In the case of remote sensing, 

the FeatureOfInterest can be the geographical area or volume that is being sensed. 

3.4 The Smart City Ontology 

The focus of the OGC SensorThings data model is observation data, sensors and IoT devices. The 

Thing entity is “an object of the physical world or the information world that is capable of being 

identified and integrated into communication networks” (REF ITU-T Y.2060). This corresponds to the 
“Virtual Entity” concept of the IoT-A Domain Model, which may represent a “Physical Entity” in the 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 15 of 30 Submission date: August 31 2015 

 

 

 

digital world. However, the information provided by the Thing entity of OGC SensorThings is limited 
to identity, location and a collection of key-value pairs. To represent the Smart City domain, and be 

able to explore type information and relationships between concepts in the Smart City, additional 

functionality and power of expression is needed. The smart city domain is represented in the Smart 
City Ontology. 

 

 

 

Figure 9: Ontology for the waste management use case 

The Semantic Representation Framework (SRF) currently provides a REST API to perform queries and 

type inferencing on the graph data of the Smart City Ontology. (This is described in ID5.4.) The SRL 
will be extended with project specific queries to meet the needs of client applications.  

If the application being developed uses static type information, e.g. in a configuration file, and does 

not need to perform type inference or queries over the ontology graph, the Smart City Ontology may 
be used during development only and not at run-time.   

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 16 of 30 Submission date: August 31 2015 

 

 

 

4. Developer APIs 

4.1 Cloud API organization 

The Cloud based APIs are structured in logical groups: the Smart City Resource Library API, the 

Historical Data API, the Live Data API, the Data Fusion Services API, the Provisioning API and the 
Management API. Since not all tasks in the ALAMANAC projects are finished or have started, the design 

and implementation status of the APIs and the components realizing the functionality varies.  

 

Name Format API Status Realizing 

components 

Smart City 
Resource Library 

API 

OGC 
SensorThings, 

SPARQL 1.1. 

HTTP formats  

OGC 
SensorThings 

API, SPARQL 1.1 

HTTP 

First version 
implemented 

Virtualization 
Layer, Semantic 

Resource 

Framework, 
Resource 

Catalogue 

Historical Data 

API 

OGC 

SensorThings 

OGC 

SensorThings API 

First version 

implemented 

Virtualization 

Layer, Storage 

Manager 

Live Data API OGC 

SensorThings 

Custom In development Virtualization 

Layer, Data 

Fusion Manager 

Data Fusion 

Services API 

ALMANAC Data 

Fusion Language 
(spChains) 

ALMANAC Data 

Fusion Language 
(spChains) 

First version 

implemented 

Virtualization 

Layer, Data 
Fusion Language, 

Data Fusion 

Manager 

Provisioning API OGC 

SensorThings + 

JSON-LD 

OGC 

SensorThings API 

In development Virtualization 

Layer, Resource 

Catalogue, SCRAL 

Management API - - In design Virtualization 

Layer, Security 
and Privacy 

Framework 

 

4.2 Smart City Resource Library Services API 

The Smart City Resource Library Services API (SCRLS API) s used to query for IoT Resources and 

Things based on metadata, e.g. resource type, the feature of interest being observed or observable 
property.  

For type inference and queries on classes the smart city domain, the SCRLS API use the SPARQL 

1.1. HTTP API described in (ID5.4), which provides easy programmatic access to the graph based 
domain models of the Smart City Ontology.  

The instance and device queries use the OGC SensorThings API. This may be used to search instances 
of a specific type, location, or Datastream values, e.g. for all Things that are WasteBins, all Things 

that are within 100 meters of a geolocation, all Things on a specific address or Things that fulfil some 

restriction on the latest value of a Datastream. 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 17 of 30 Submission date: August 31 2015 

 

 

 

The following OGC SensorThings API URI Patterns are part of the Smart City Resources Library API:  

 SERVICE_ROOT_URI/ENTITY_SET_NAME 

 SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY) 

 

Resource HTTP 

verbs 

Query 

Option

s 

Example 

cloud-api/ld/v0_1/Things GET $filter, 

$skip, 

$top 

/Things? $filter=type eq WasteBin 

/Things?$filter=location geo.distance 100 

45.07248713 7.69348914 100=meter 

45.07248713=latitude 7.69348914=longitude 

/Things?$filter=address startswith Via Bologna 

http://linksmart.cnet.se:44441/ogc/Things?$filt

er=location geo.distance 100 45.07248713 

7.69348914&$xpath=//IoT:fillLevel[.>90] 

cloud-

api/ld/v0_1/Things(ENTITY_SET_N

AME) 

GET  /Things(FE6494DE) 

 

4.3 Historical Data API 

The Historical Data API provides access to stored observations in data streams (time series data) from 
sensors or data fusion queries. The observations may be filtered by time stamps or other properties 

of the observations using a subset of the OGC SensorThings API Sensing Profile. To find Observations 

based on type or properties of the Thing a Datastream belongs to, multiple query steps will have to 
be performed. 

1. Optionally query the Smart City Resources Library API to find the resource types matching the 
query (e.g., inferring that the WasteBin means PaperBin, GlassBin, OrganicBin). 

2. Find the resources (Things) that match the resource type and other constraints using the 

Smart City Resources Library API. E.g., ask for the ID of an OGC Thing with the type 
OrganicBin within 100 meters of a specified Location. 

3. Use the IDs of the Datastreams of the Thing to query the Historical Data API for Observations.  

The following OGC SensorThings API URI Patterns are part of the Historical Data API:  

 SERVICE_ROOT_URI/ENTITY_SET_NAME 

 SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY) 

 

 

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 18 of 30 Submission date: August 31 2015 

 

 

 

Resource HTTP verbs Query 

Options 

Example 

cloud-api/hd/v0_1/Datastreams GET $filter, 

$orderby, 

$count, 

$skip, $top 

/Datastreams(AB6494CB) 

/Datastreams?$top=10&$skip=10 

cloud-

api/hd/v0_1/Datastreams(ID_OF_

THE_ENTITY)/Observations 

GET $filter, 

$orderby, 

$count, 

$skip, $top 

/Datastreams(AB6494CB)/Observatio

ns?$top=10&$skip=10 

cloud-api/hd/v0_1/Observations GET $filter, 

$orderby, 

$count, 

$skip, $top 

/Observations(3458) 

/Observations? $filter=Datastream/id 

eq 'AB6494CB' and resultTime ge 

2010-0601T00:00:00Z 

 

4.4 Live Data API 

The Live Data API is used to query resources for data directly and subscribe to events from sensors 

or data fusion queries using web sockets. As with the Historical Data API, the Smart City Resources 

Library API is used to find the id of the resources, e.g. the ID of a Thing that is an instance of the 
class OrganicBin within 100 meters of a specified Location. The resource identifiers in the result may 

be used to subscribe for events via web sockets or to query the resources for data. 

 Direct querying 

The direct querying or control/actuation of connected physical devices using the Live Data API is done 

via a subset of the OGC SensorThings API Sensing Profile, like the Historical Data API is used to query 
for historical data. Note that the Observations collection will only contain one observation, the 

latest/current value. 

The following OGC SensorThings API URI Patterns are part of the Historical Data API:  

 SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)/ 

ENTITY_SET_NAME(ID_OF_THE_ENTITY)/ENTITY_SET_NAME  

 

Resource HTTP 

verbs 

Query 

Options 

Example 

cloud-api/ld/v0_1/ 

Things(ID_OF_THE_ENTITY)/ 

Datastreams(ID_OF_THE_ENTITY)/ 

Observations 

GET - Things(FE6494DE)/Datastreams(AB6494

CB)/Observations  

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 19 of 30 Submission date: August 31 2015 

 

 

 

 Subscription to events 

The Live Data API for subscribing to events is not yet specified and will be further developed and 

detailed in the second iteration of this document (D7.3.2). 

However, an implementation of the mechanism in the Virtualization Layer exists. It allows the 
application to subscribe to events from Datastreams (using MQTT topics, see D3.1.2) and receive data 

on web sockets. This mechanism has already been used in the ALMANAC prototypes used in 
demonstrations are detailed in (D5.1.2).  

4.5 Data Fusion Services API 

In the ALMANAC DFL specification (ID6.3.2), a set of REST APIs has been designed to allow users to 
Create, Read, Update and Delete (CRUD) data fusion queries defined using the DFL and implemented 

by the ALMANAC Data Fusion Manager. These APIs are still preliminary and might undergo several 
reviews during the project lifetime. These resources will be integrated into the full ALMANAC Cloud 

APIs. 

The Data Fusion Services API is defined using the Swagger tool and syntax, which enables automatic 
generation of client and server-side code. 

The main REST resources offered by the DF layer, for what concerns the definition of the stream 
processing chains are described in the table below. 

 

Resource Description Allowed HTTP verbs 

/dfs/v0_5/data-fusion/chains The collection of all chains 

registered in the DFM, using 
the DFL language. 

GET (read), POST (create) 

/dfs/v0_5/data-
fusion/chains/{chain-id} 

The processing chain identified 
by the given {chain-id}. Chain 

definition is intended in a wide 

sense and includes also the 
specification of source and 

drains connected to the actual 
chain 

GET (read), PUT (update),  

/dfs/v0_5/data-fusion/sources The sources currently 

registered in the DFM 

GET (read), POST(create) 

/dfs/v0_5/data-

fusion/sources/{source-id} 

The source identified by the 

given {source-id} 

GET (read), PUT (update),  

/dfs/v0_5/data-fusion/drains The drains currently registered 
in the DFM 

GET (read), POST(create) 

/dfs/v0_5/data-

fusion/drains/{drain-id} 

The drain identified by the 

given {drain-id} 

GET (read), PUT (update),  

/dfs/v0_5/data-fusion/templates The templates currently 

registered in the DFM 

GET (read), POST(create) 

/dfs/v0_5/data-
fusion/templates/{template-id} 

The source identified by the 
given {template-id} 

GET (read), PUT (update),  

 

The full documentation of available calls and formats is still subject to changes and a preliminary 
version of it is reported in Appendix A of the internal deliverable ID6.2.2. 

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 20 of 30 Submission date: August 31 2015 

 

 

 

4.6 Provisioning API 

To define new types of resources, these types will have to be added to the Smart City Ontology using 
the Smart City Resource Library API. New instances of these types are then added by the SCRAL  when 

devices, e.g. temperature or fill-level sensors, start reporting data. However, the SCRAL will not add 
resources (Things) that are not devices. To add new instances of e.g. a city Quarter or a PaperBin 

from an application at design time or run-time, the Provisioning API is used. 

The details of the Provisioning API will be further developed and detailed in D7.3.2, the second 
iteration of this document,  but the current design is outlined below. 

To connect the OGC SensorThings API with semantic information in the Smart City Ontology, JSON-
LD5 will be used. E.g., to create a new instance of PaperBin, JSON-LD is used to annotate the 

representation of a Thing with class information from the Smart City Ontology.  

 

 

The semantic information in the JSON-LD format may be extracted as triples as shown in Figure 11.  

 

 

The following OGC SensorThings API URI Patterns are part of the Provisioning API:  

 SERVICE_ROOT_URI/ENTITY_SET_NAME 

 SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY) 

 

                                           
5 http://json-ld.org/ 

{ 
  "@context": { 
     "smartcity": "http://almanac-
project.eu/ontologies/smartcity.owl#" 
  }, 
   
  "@id": 
"fa26ae9fe5199c9330b14c92bd4a70099d4
35fba23aaac5dcebd5943d40e2fe9", 
  "@type": "smartcity:PaperBin", 
  "DataStreams": [{ 
    "@id": 
"ba77ae9fe5199c9330b14c92bd4a70099d
435fba23aaac5dcebd5943d40eef45", 
"ObservedProperty":{"@id":"e5c959aa911
9dddff08d9239452bbe77710c28617e4da1
9127885a4edd88d0a8"} 
  }] 
} 

Figure 10: A Thing representation with JSON-
LD annotation. 

<http:// almanac-project.eu 
/fa26ae9fe5199c9330b14c92bd4a70099d435fba23aaac5dcebd5943d40e2fe9> 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://almanac-
project.eu/ontologies/smartcity.owl#PaperBin>  

 
Figure 11: Triples extracted from the JSON-LD Thing representation. 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 21 of 30 Submission date: August 31 2015 

 

 

 

Resource HTTP Verbs Example 

/cloud-api/pm/v0_1/Things GET (read), POST 

(create), PUT 

(update), DELETE 

(delete) 

/Things 

/Things(AB6494CB) 

 

4.7 Management API 

The Security and Privacy Framework realizing the Management API is still under design. The basc 

security framework is outlined in (D3.1.2) and will be further developed in the next iteration of the 
API design. Therefore we can only provide a cursory overview of the scope and purpose the 

Management API. It will handle:  

 Users, roles and access control to devices and data – possibly offering the possibility to set 

access control for historical and live data differently - for ALMANAC platform instances and 

federations.  

 Authentication mechanisms and access control for developers and end user applications.  

 Also, the Management API will handle the necessary credentials and trust management for 

devices using the automatic provisioning in an ALMANAC platform instance performed by the 
SCRAL component.  



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 22 of 30 Submission date: August 31 2015 

 

 

 

5. Development Tutorial  

This section will exemplify how the Cloud based APIs may be used by a developer building a small 

application on the ALAMANAC platform. We will use an example from the waste bin domain to illustrate 

the use of the Cloud based APIs. Sections for the Cloud based APIs that are still in development at 
this time will be added in D7.3.2, e.g. subscriptions to live data, resource provisioning and security 

management. 

5.1 Finding types in the Smart City Ontology 

The domain model of the smart city is represented by the Smart City Ontology. There, we may find 

the classes of Things relevant to the application, which in turn may have Datastreams with 
Observations (measurements) associated to them. We may query the Smart City Resource Library 

Services API  (SCRLS API) using the SPARQL 1.1. HTTP interface (see D5.4). This way we can find the 

class identifers for all possible classes of wastebins and the ObservableProperties they may have. 
Using these classes, we may query other parts of the Cloud based APIs for instances and their data. 

In this example, we are interested to find out the different sub classes of WasteBin, so that we may 
find the type of bins used for organic waste. 

HTTP 

Metod 

Endpoint Request 

Content 
Type  

Response Type 

POST /cloud-api/scrl/v0_1/resource/semantic/  application/ 

sparql-query 

application/ 

sparqlresults+xml 

 

The request body is a SPARQL query as shown in Figure 12. 

 

 

The response can be seen in Figure 13 in SPARQL Query Results XML Format 

(SPARQL 1.1 Query Results JSON Format and other response formats are also possible, described in 
ID5.4.1). 

 

SELECT ?subClass WHERE { ?subClass <http://www.w3.org/2000/01/rdf-

schema#subClassOf> <http://www.ismb.it/ontologies/wastebin#WasteBin> . } 

Figure 12: SPARQL Query for types of waste bins. 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 23 of 30 Submission date: August 31 2015 

 

 

 

 

 

In many applications, the set of classes handled in an application may be fixed. Then we may use an 
ontology editor like WebProtege6 to browse the Smart City Ontology at design time and store the type 

identifiers in the application’s configuration file instead of fetching them at run-time. 

                                           
6 http://greencom.fit.fraunhofer.de:8080/webprotege/ 

<sparql xmlns="http://www.w3.org/2005/sparql-results#"> 

  <head> 

    <variable name="subClass" /> 

  </head> 

  <results> 

    <result> 

      <binding name="subClass"> 

        <uri>http://www.ismb.it/ontologies/wastebin#UsedClothesBin</uri> 

      </binding> 

    </result> 

    <result> 

      <binding name="subClass"> 

        <uri>http://www.ismb.it/ontologies/wastebin#OrganicBin</uri> 

      </binding> 

    </result> 

    <result> 

      <binding name="subClass"> 

        <uri>http://www.ismb.it/ontologies/wastebin#DryWasteBin</uri> 

      </binding> 

    </result> 

    <result> 

      <binding name="subClass"> 

        <uri>http://www.ismb.it/ontologies/wastebin#PaperBin</uri> 

      </binding> 

    </result> 

    <result> 

      <binding name="subClass"> 

        <uri>http://www.ismb.it/ontologies/wastebin#PlasticBin</uri> 

      </binding> 

    </result> 

    <result> 

      <binding name="subClass"> 

        <uri>http://www.ismb.it/ontologies/wastebin#GlassBin</uri> 

      </binding> 

    </result> 

  </results> 

</sparql> 

Figure 13: SPARQL Query response. 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 24 of 30 Submission date: August 31 2015 

 

 

 

 

                                        Figure 14: View of the WasteBin class hierarchy in WebProtege. 

In Figure 14, we see how the WebProtege Classes view is used to browse the subclasses of 

WasteBin, and we see that OrganicBin has the URI:  

“http://www.ismb.it/ontologies/wastebin#OrganicBin”. 

5.2 Finding resources 

To find a resource, e.g. a device or Smart City Resource Library Services API, The Smart City Resource 

Library Services API is used. Using the type identifier we retreived from the SCRLS API, we may ask 
for all waste bins of the class OrganicBin within a 100 meters of a specific location. 

 

HTTP 
Metod 

Endpoint Query String Request 
Content Type  

Response 
Content Type 

GET /cloud-
api/scrl/v0_1

/Things  

filter=location geo.distance 100 
45.07248713 7.69348914 

100=meter 45.07248713=latitude 

7.69348914=longitude 

application/ 
json 

application/json 

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 25 of 30 Submission date: August 31 2015 

 

 

 

In the reponse from this query, a part of which is shown in Figure 15, we can find the identifiers of 
Things, Datastreams and ObservableProperties we need to e.g. query for further data, perform 

actuation, or create DFL queries.  

 

5.3 Querying resources 

The current and historical values of Datastreams associated with Things may be accessed through the 

Historical Data API. Using the information retrieved from the SCRLS API, we query the Historical Data 
API for the Observations from the Datastream we saw in the response from the previous query. In 

the table below is an example of a query for the Observations of a specified Datastream for the week 

starting 2015-08-17. 

{ 

    "Thing": [ 

        { 

            "id": "41ee87c585fc7b031e31cc10093d59f02cd09091df106ef49860cc5308861abf", 

            "Description": "The WasteBin connected to the WasteBinSimulator network.", 

            "Metadata": "http://almanac-project.eu/ontologies/smartcity.owl#WasteBin", 

            "Locations": [ 

                { 

                    "Time": "2015-06-10T08:14:57.497Z", 

                    "Geometry": { 

                        "type": "Point", 

                        "coordinates": [ 

                            7.69279983, 

                            45.07283598 

                        ] 

                    } 

                } 

            ], 

            "Datastreams": [ 

                { 

                    "id": 

"a29444551b4c8f4919d8690b9a18167e83a9a32f0ea7356a00aa4c45f10407a1", 

                    "ObservedProperty": { 

                        "id": 

"1a6df8a833eb841d860c3d61ea20fab5542e42361ca4ef9bb3024ae4f9596521", 

                        "UnitOfMeasurement": "unknown" 

                    } 

                }, 

                { 

                    "id": 

"9b9e27f9a6c3ab90e29d9648f449b7377f82d28e46b7bdb34973cefa6730d6f4", 

                    "ObservedProperty": { 

                        "id": 

"a79cdca3780f898368bb0477d684ef7af588f8a2889be867d7319c2cacdded55", 

                        "URI": "http://almanac-

project.eu/ontologies/smartcity.owl#TemperatureState", 

                        "UnitOfMeasurement": "C" 

                    } 

                }, 

                { 

                    "id": 

"1d989552561d30afcdcc4f5b89a8fcd68d2887f763a958fae74e582c47437fc7", 

                    "ObservedProperty": { 

                        "id": 

"53e27d119786139435b85d9dcf7e30783c423640abd945c5d2388c92d1b12a05", 

                        "URI": "http://almanac-

project.eu/ontologies/smartcity.owl#FillLevelState", 

                        "UnitOfMeasurement": "%" 

                    } 

                } 

            ] 

        } 

    ] 

} 

Figure 15: The response from a SCRLS API query. 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 26 of 30 Submission date: August 31 2015 

 

 

 

 

HTTP 
Metod 

Endpoint Query String Request 
Content Type  

Response 
Content Type 

GET /cloud-
api/hd/v0_1/

Observations  

$filter= 

Datastream/id eq 

'ab1db42dea1bcdcb03f61b2a47ada

8a77955715abe9bbed6611d82ba5f
fa3570'  

and resultTime ge 2015-
0817T00:00:00Z and resultTime le 

2015-0824T00:00:00Z 

application/ 
json 

application/json 

 

The response from the Historical Data API is a set of Observations from the specified time period. 

 

5.4 Defining data fusion queries 

To create new data fusion queries, the Data Fusion Services API is used. An example of combining 

data from existing sources using the Data Fusion Services API is the “bad smell detection” query. 
Whenever the weather becomes hot, e.g., in summer, and OrganicBin waste bins are almost full the 

chance to have unpleasant odour spreading in the neighbourhood of the rubbish collection isle 

increases dramatically. In a smart city scenario, this situation can easily be overcome by implementing 
“bad smell” detection as result of a Data Fusion process merging information from the current fill-level 

{ 

    "Observations": [ 

        { 

            "ID": "1", 

            "Datastream": { 

                "ID": 

"ab1db42dea1bcdcb03f61b2a47ada8a77955715abe9bbed6611d82ba5ffa3570" 

            }, 

            "ResultValue": "100.0", 

            "Time": "2015-08-17T13:35:43.6900000Z" 

        }, 

        { 

            "ID": "2", 

            "Datastream": { 

                "ID": 

"ab1db42dea1bcdcb03f61b2a47ada8a77955715abe9bbed6611d82ba5ffa3570" 

            }, 

            "ResultValue": "100.0", 

            "Time": "2015-08-18T11:05:43.6920000Z" 

        }, 

        { 

            "ID": "3", 

            "Datastream": { 

                "ID": 

"ab1db42dea1bcdcb03f61b2a47ada8a77955715abe9bbed6611d82ba5ffa3570" 

            }, 

            "ResultValue": "100.0", 

            "Time": "2015-08-19T10:35:43.6580000Z" 

        } 

    ] 

} 

Figure 16: The response from the Historical Data API 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 27 of 30 Submission date: August 31 2015 

 

 

 

of monitored waste bins and the current air temperature. Such detection process can be easily 
described using the ALMANAC DFL as shown in Figure 17.Figure 17 

 

 

Figure 17. Bad smell detection query with event streams and threshold filters 

 The corresponding DFL construct, in JSON notation is reported in Figure 18Figure 18. Is it easy to 
notice how simple is the definition of such a chain and, the degree of customization that can be 

supported, even in this very simple scenario. By posting the chain definition to the Data Fusion Services 
API, we have created a data fusion query that can be used by the application to detect bad smell from 

waste bins. 

 

HTTP 
Metod 

Endpoint Request Content 
Type  

Response Content Type 

POST /dfs/v0_5/data-

fusion/chains 

application/ json application/json 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 28 of 30 Submission date: August 31 2015 

 

 

 

 

Figure 18. Odour detection chain definition in JSON. 

 



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 29 of 30 Submission date: August 31 2015 

 

 

 

6. Future work 

The parts of the Cloud based APIs that are still in development will be specified in the next iteration 

of this deliverable: the Live Data API, the Provisioning API and the Management API. Swagger 

descriptions of the Cloud based APIs will be provided for these APIs.  

The capabilities of the Cloud API categories will thus evolve, among these are enhanced semantic 

entity query capabilities, providing an integration of the OGC data and Smart City Ontology resources 
with external services for business systems data. The progress of this work will be recorded in the 

Cloud Based API online resource page linking the tutorial examples to an ALMANAC Platform Instance 

“sandbox” for experimentation with and test of the APIs. 

The possibility of adding graphical interfaces for parts of the Cloud based APIs will be investigated in 

order to improve the quality and ease of use.  The Data Fusion Language in particular is considered 
suitable for a graphical representation.  For the final version of the Cloud based development APIs we 

foresee a Web IDE including the collection of ALMANAC tools as well as hyperlinked versions of the 
developer tutorials.  



ALMANAC D7.3.1 Cloud-based APIs for Smart City applications - Developers Guide 1 
 

 

Document version: 1.0 Page 30 of 30 Submission date: August 31 2015 

 

 

 

7. References 

(Bonino et al., 2012-1) D. Bonino and F. Corno. spchains: A declarative 

framework for data stream processing in pervasive 

applications. Procedia Computer Science, 

10(0):316–323, 2012. ANT 2012 and MobiWIS 

2012. 

 

(Bonino et al., 2013) Bonino, D., F. Corno, and L. De Russis, "Real-time 

Big Data Processing for Domain Experts, An 

Application to Smart Buildings", Big Data 

Computing: CRC Press, pp. 415-447, 2013. 

 

(ID6.2.2) ALMANAC ID6.2.2 Data Fusion Language and 

Prototype 2 

 

(ID6.3.2) ALMANAC ID6.3.2 Event Processing Agent for Smart 

City Applications 

 

(ID5.4) ALMANAC  ID5.4 Ontologies and Semantic 

Representation Layer Prototype 1 

 

(D3.1.2) ALMANAC D3.1.2 System Architecture Analysis and 

Design Specification 2 

 

(D5.1.2) D5.1.2 Design of the abstraction framework and 

models 2 

 

(Liang et al., 2015) Liang, S., Huang, C., Khalafbeigi, T. (2015) OGC® 

SensorThings API, Part 1: Sensing 

 

(OGC and ISO 19156:2011) OGC Abstract Specification, Geographic information 

Observations and measurements 

(ITU-T Y.2060) Overview of the Internet of things 

  

 


