
Document version: [1.0] Submission date: 28th February 2014

(FP7 609081)

D3.1.1 System Architecture Analysis & Design Speci fication 1

Date 28th February 2014 – Version [1.0]

Published by the ALMANAC Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2013.1.4: A reliable, smart and secure Internet of Thingsj for Smart Cities

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 2 of 69 Submission date: 28th February 2014

Document control page

Document file: D3.1.1 System Architecture Analysis and Design Specification 1
Document version: [1.0]
Document owner: Mark Vinkovits (Fraunhofer FIT)

Work package: WP3 – Smart City Platform Architecture

Task: All WP3 tasks
Deliverable type: R

Document status: approved by the document owner for internal review
 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Mark Vinkovits (FIT) 2013-12-03 Initial ToC
0.2 Mark Vinkovits (FIT) 2014-01-30 Contributions chap. 3 and 9.
0.3 Alexandre Alapetite (ALEX),

Giampiero Bono (ISMB),
Matts Ahlsén (CNET),
Mathias Axling (CNET),
Riccardo Tomasi (ISMB)

2014-02-07 Contributions chap. 4, 5, 6, 7, 9 and
annexes

0.4 Mark Vinkovits (FIT) 2014-02-10 Integrated contributions
0.5 Matthias Axling (CNET) 2014-02-12 Extended contributions in ch 6,8,9.
0.55 Riccardo Tomasi (ISMB),

Giampiero Bono (ISMB)
2014-02-14 Added annex 3

0.6 Mathias Axling, Matts Ahlsén
(CNET)

2014-02-17 Extension of ch 6,8,9 and annex.

0.7 Mark Vinkovits (FIT) 2014-02-17 Contribution to ch. 2,4. Integration of
input to annex 3.

0.8 Mark Vinkovits (FIT) 2014-02-18 Final review and approved for internal
review

1.0 Mark Vinkovits (FIT) 2014-02-25 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Jesper Thestrup 2014-02-24 Accepted with minor comments
Maurizio Spirito 2013-02-25 Accepted with minor comments

Legal Notice

The information in this document is subject to change without notice.

The Members of the ALMANAC Consortium make no warranty of any kind with regard to this document,

including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The Members of the ALMANAC Consortium shall not be held liable for errors contained herein

or direct, indirect, special, incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects
solely the views of its authors. The European Commission is not liable for any use that may be made of

the information contained therein.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 3 of 69 Submission date: 28th February 2014

Index:

Table of Figures .. 5

1. Executive summary ... 6

2. Introduction .. 7

2.1 Purpose, context and scope of this deliverable .. 7

2.2 Background .. 7

3. Methodology .. 8

3.1 Bottom-up process .. 9

3.2 Use case driven/Top-down process .. 9

3.2.1 Workshop one .. 10

3.2.2 Workshop two .. 10

3.2.3 Workshop three .. 10

3.3 Documentation of architecture ... 10

4. Functional view ... 12

4.1 Overview of components ... 12

4.2 List and description of components ... 13

4.2.1 Smart City Resources Adaptation Layer (SCRAL) 13

4.3 Virtualization Layer ... 15

4.4 Data Management Layer .. 16

4.5 Policy Management Framework .. 17

5. Deployment view ... 18

5.1.1 Network View ... 20

5.1.2 Notes on Federation Issues .. 22

6. Information view ... 24

6.1 Overview of information flow .. 24

6.2 Description of information flows ... 24

6.2.1 Current or latest values ... 25

6.2.2 Historical values ... 27

7. Perspectives .. 28

7.1 Security perspective ... 28

7.1.1 Crypto Manager .. 28

7.1.2 Trust Manager .. 28

7.1.3 Communication Security Manager ... 28

7.2 Scalability perspective ... 28

7.2.1 Event Manager ... 29

7.2.2 Semantic IoT Resources ... 30

7.2.3 IoT-cloud enabled Storage Manager .. 30

7.2.4 Caching ... 30

8. Supporting infrastructure: LinkSmart .. 32

8.1 Introduction of LinkSmart .. 32

8.2 Architecture of LinkSmart .. 32

9. Technical use case instantiation .. 35

9.1 Technical use case: Data collection and rule based notification 35

9.1.1 Design-time scenario ... 35

9.2 Technical use case: Historic data aggregation and reasoning 37

9.3 Technical use case: Smart City Resource registration 37

9.4 Technical use case: end-user data access .. 38

9.4.1 User Authentication into the ALMANAC Platform 39

9.4.2 Citizen Personal Profile access .. 39

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 4 of 69 Submission date: 28th February 2014

9.4.3 API-driven Citizen Data Access ... 39

9.4.4 API-driven Citizen Consumption Benchmarking 40

9.4.5 Extended Use Case: API-driven actuation ... 41

10. References .. 42

1. Annex: Component descriptions .. 43

2. Annex: Reference Architectures .. 52

2.1 Reference architectures ... 52

2.2 Elements of the IoT ARM ... 52

2.2.1 IoT-A domain model .. 53

2.2.2 Information Model ... 55

2.2.3 Functional model .. 56

2.2.4 Views in the Reference Architecture .. 57

2.2.5 Perspectives (architectural qualities) in the IoT ARM 58

2.3 ALMANAC in relation to IoT ARM ... 59

3. Annex: State of the art library ... 60

3.1 Devices ... 61

3.2 Systems .. 62

3.3 Services .. 64

3.4 Research Applications ... 65

3.5 Commercial Applications .. 67

3.6 Standards .. 67

3.7 Fi-WARE components .. 68

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 5 of 69 Submission date: 28th February 2014

Table of Figures

Figure 1 Initial ALMANAC architecture as presented in DoW .. 8

Figure 2 Initial component coverage of architecture ... 9

Figure 3 Component diagram of the ALMANAC platform ... 12

Figure 4 Smart City Resources Adaptation Layer (SCRAL) component diagram 14

Figure 5 Data Management Framework functionality .. 16

Figure 6 Reference architecture for XACML ... 17

Figure 7 Deployment view, simplified configuration .. 18

Figure 8 Deployment view, ETSI-M2M Gateway scenario .. 19

Figure 9 Deployment view, ETSI-M2M Platform scenario ... 20

Figure 10 ALMANAC Network View ... 21

Figure 11 Water Supply Network ... 22

Figure 12 Waste Management Network .. 22

Figure 13 Example application domain model .. 24

Figure 14 Data storage and domain model .. 25

Figure 15 Defining a Semantic IoT Resource ... 25

Figure 16 Requesting the latest, still valid, value for a property ... 26

Figure 17 Requesting the latest, but now invalid, value for a property 27

Figure 18 Example of distributed components in the Data Management Framework 29

Figure 19 LinkSmart Example Concrete Deployment .. 33

Figure 20 LinkSmart Example Device Network ... 34

Figure 21 Calculating the aggregate value "Smell" when a new temperature value is received36

Figure 22 Calculating "Smell" on request .. 36

Figure 23 Use case: device discovery and adaptation ... 37

Figure 24 Sequence diagram: device discovery and adaptation ... 38

Figure 25 Use Cases: end-user API-driven data access and comparison.............................. 38

Figure 26 Sequence Diagram: user authentication into the ALMANAC platform 39

Figure 27 Sequence Diagram: citizen access his personal profile 39

Figure 28 Sequence Diagram: user access to personal consumptions statistics data 40

Figure 29 Sequence Diagram: citizen consumptions benchmark .. 40

Figure 30 Sequence diagram: API actuation example ... 41

Figure 31 A reference architecture provides the instruments and guidelines for domain specific
architectures from which specific system designs are derived. ... 52

Figure 32 Sub-models of the IoT Reference Model (From (Bassi et al., 2013)) 53

Figure 33 UML version of the IoT-A Domain Model ... 54

Figure 34 Example modelling using the Domain Model. .. 55

Figure 35 Example instantiation of the Information Model ... 56

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 6 of 69 Submission date: 28th February 2014

1. Executive summary

This deliverable describes a first version of the architecture used within ALMANAC. There will be an

updated version of the architecture description in deliverable D3.1.2 due in month 18 and a final

version in deliverable D3.1.3 due in month 28.

First, the methodology used to achieve and document the architecture is presented. The architecture

is the result of a bottom-up phase, where individual partner technologies had been in focus, and a
top-down phase, where applications and platform services had been defined. The definition has also

been guided by the requirements collected in WP2. The documentation of the architecture is based

on IEEE 1471 “Recommended Practice for Architectural Description for Software-Intensive Systems”
(IEEE 1471, 2000). It implies a process which builds on a set of relevant architecture viewpoints.

In the functional view the components, their functionality, and their interactions are described. The
main components are:

• Data Management Layer: the component that enables caching and querying of collected

smart city data,

• Virtualization Layer: the component that abstracts from specific resources to virtual entities,

easily accessible by smart city applications,

• Smart City Resource Adaptation Layer: the component that uniforms access across a

number of protocols, enabling interoperability when accessing devices,

• Policy Management Framework: the component that protects the privacy of stakeholders in

a transparent way across the platform.

The deployment view describes how and where the system will be deployed and what dependencies

exist, considering hardware requirements and physical constraints.

The information view describes the data models and the data flow as well as the distribution. The

viewpoint also defines how the distinction between fresh and latest values is achieved.

Finally, a number of use cases are described which will be relevant for the ALMANAC project. The
purpose of these use cases is to clarify how the ALMANAC platform will work and which components

are relevant for the different tasks.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 7 of 69 Submission date: 28th February 2014

2. Introduction

This chapter outlines the purpose, background, and context of this deliverable as well as the

structure of the remaining document.

2.1 Purpose, context and scope of this deliverable

This deliverable defines the initial architecture for the ALMANAC platform. The requirements for the

architecture can change during the course of a project and some aspects of the architecture need

verification during development, and therefore the architecture described here cannot be considered
to be final or complete. There will be an updated version of the architecture description in

deliverable D3.1.2, due in month 18, and a final version in deliverable D3.1.3, due in month 28.

Within the ALMANAC work package structure, Work Package 3 (Smart City Platform Architecture) is

responsible for specifying the system architecture design. Having completed the previous steps in

WP2 (Requirements Engineering and Smart City Business Models), i.e. an initial set of requirements,
this deliverable defines the system architecture, preparing for prototypal implementation to be

carried out by the technical work packages.

The architectural description includes aspects related to the identification of the major system

components, how they should interact and how their external interfaces should be defined.

Chapters are presented as follows. In chapter 3 the methodology for documenting the architecture
will be introduced. Chapters 4 to 8 contain the different views of the architecture; these are then

instantiated for specific technical use cases in chapter 9. The document also possesses three
additional annexes that report activities that supported the architecture definition process.

2.2 Background

The ALMANAC Smart City Platform (SCP) collects, aggregates, and analyses real-time or near real-
time data from appliances, sensors and actuators, smart meters, etc. deployed to implement Smart

City processes via an independent, pervasive data communication network. ALMANAC aims at
achieving pervasiveness by defining a short range capillary radio network providing local Machine-to-

Machine (M2M) connectivity to smart things and enabling their active involvement in Smart City

processes. The SCP allows decision support and implements intelligent control of the devices
through the capillary networks with a M2M management platforms, as well as management of local

installations.

The technological work in connection with the development of the ALMANAC Smart City platform will

be highly influenced by requirements generated in the City of Turin. Its path to become “Smart City”

started 2 years ago, when the City Council took the decision to take part in the initiative of the
European Commission “Covenant of Mayors” and – as one of the first Italian cities – engaged itself

to elaborate an Action Plan for Energy in order to reduce its CO2 emissions more than 20% by 2020.

Three specific applications (waste management, water supply and citizens’ engagement) have been

selected for proof-of-concept implementation and evaluation in the ALMANAC platform. These

applications are deemed to be sufficiently representative for a large number of applications, as will
be visible from the use case descriptions. Given the challenging objectives, we have aimed for a set

of 1) cross application domain use cases that 2) consist of a large amount of heterogeneous devices
and 3) generate large amounts of data.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 8 of 69 Submission date: 28th February 2014

3. Methodology

In this chapter we present the methodology and individual steps that were taken to achieve the

architecture that is presented in later chapters. The architecture definition process was selected

based on two principles: first, each partner brought in technologies and software that were to be
considered for the architecture, additionally the ALMANAC platform was to be built based on the

LinkSmart middleware, which had also guided us with its pre-existent structure; second, since the
aim of the ALMANAC project is to provide an environment that hosts a variety of applications

running on top of it, we needed a way to regularly remind us to distinction between specific

application implementations and common platform services. The manifestations of these principles
are the bottom-up approach that initiated our architecture definition process, while the scenario

thinking and use case driven approaches can rather be seen as top-down thinking.

This chapter is structured according to these two phases. In section 3.1 we present how we have

gathered and combined individual technologies and components the partners brought into the
project; additionally, we added solutions that were foreseen and will be developed within the

ALMANAC project. The result of this phase was a more detailed view on the initial ALMANAC

architecture as presented in Figure 1. Section 3.2 afterwards deals with the top-down phase. This
phase was driven through the selection and extension of one of the scenarios presented in D2.1

(ALMANAC WP2, 2013). During this phase we held a number of workshops that lead us step by step
to the state that is presented in this deliverable.

Figure 1 Initial ALMANAC architecture as presented in DoW

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 9 of 69 Submission date: 28th February 2014

3.1 Bottom-up process

The first phase of the architecture definition process was intended to collect and categorize the

technologies and software components the individual partners of the ALMANAC project brought in
with them; through this, we wished to achieve that partner expertise got quickly identified and used

as best as possible. It also helped us identify gaps in the architecture that needed to be filled to

achieve the smart city platform, as envisioned by ALMANAC.

As first step of this phase we have defined a template: it required partners to provide short

descriptions of components, place them into the initial architecture of Figure 1, define services and
dependencies within the platform, and think of services that would be open or even accessibly

through the cloud-based API. Altogether nine component descriptions have been acquired this way;
however, as they were partially on different abstraction levels, they could not be mapped one to one

into the architecture. The collected component descriptions can be found in annex 1.

As next step we have taken the provided component descriptions and identified their position in the
initial architecture. We did so to see how well required functionality can already be covered, and to

be able to identify gaps that still needed to be addressed. We also added some components that
seemed to be realizable based on the provided component descriptions. The result of this process

can be seen in Figure 2. Looking at the distribution of components in Figure 2, it is visible that the

layers and frameworks, as specified initially, are very ambiguous and are of different nature;
therefore some of the layers are populated with multiple components, whereas other segments of

the architecture figure are barely covered. Having identified this issue, we targeted to clarify the role
of each layer during the following phases.

Figure 2 Initial component coverage of architecture

3.2 Use case driven/Top-down process

After the bottom-up process, where we identified potential main building blocks of the ALMANAC

platform, we needed to better clarify each component’s role. To be able to do so, we took
advantage of the scenarios developed in D2.1 (ALMANAC WP2, 2013), and instantiated them using

the components already identified. This has allowed us to stress the services each component would

provide, and sketch the interactions between them. Using this approach, and thinking in terms of
applications has also required us to imagine the open APIs, as envisioned by ALMANAC. In the

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 10 of 69 Submission date: 28th February 2014

following section we summarize the workshops we held with this approach, present the scenarios we
applied and summarize the lessons learnt.

3.2.1 Workshop one

At the first workshop, we used the example of an issue management application for the waste
management scenario. We concentrated on the interaction between the application and the cloud-

based open APIs of the ALMANAC platform, and looked how the communication between the two
entities would look like. We mainly concentrated on the data gathering phase, as that was the most

relevant for the upcoming first demonstrator. As an underlying infrastructure, we investigated the
possibilities of an M2M platform, and sketched the integration possibilities with the middleware,

based on the potential standardized interfaces: NSCL, GSCL, DSCL (Network-, Gateway-, Device

Service Capability Layer) (ETSI, 2011). Related to physical deployment, our focus was on the diverse
capabilities of a cloud infrastructure compared to lightweight gateways, and on the mechanisms to

distribute responsibilities accordingly. Main achievements of the workshop were:

• The GSCL interface has the biggest potential for long-term integration of M2M.

• Storage of historical open data should be located in the cloud, as it has the best possibilities

to tackle scalability issues.

• To support scalability of data collection, gateways may be commanded to do pre-

aggregation of data before submitting it to the cloud.

• Semantic representation should be divided into following categories: device level, service

level, smart city level.

• The Virtualization Layer should be supported with semantic information concerning devices,

gathered by the Smart City Resource Adaptation Layer.

3.2.2 Workshop two

At the second workshop we reviewed the results of the previous one, and investigated it from other

perspectives: network federation and information ownership. Related to the first point, we found
that our view from the previous workshop considered the network too much as a homogeneous

black-box, and that therefore, we did not identify components handling the interaction between

autonomous networks. While trying to clarify the challenges of federating networks, we found that
one of the main driving forces in our process should be the already mentioned question of

ownership: who collects, who owns and who can access data produced in the smart city platform.
We identified several use-cases of using the ALMANAC system, categorized by ownership of

infrastructure, ownership of information and access to information. These questions had a large

potential impact on the previously drafted architecture, and we could not answer them at this
workshop. As a result we agreed on an additional workshop, with a number of phone conferences in

advance as preparation.

3.2.3 Workshop three

We arrived much prepared at the third workshop due to the many phone conferences we held
before. Main topics included: elaboration of terms that have been used ambiguously before,

clarification of entry points for applications and devices, differentiation of storage approaches used

for different use cases. Having established this common ground, we reviewed the previously drafted
architecture diagrams and finalized them into the form as presented in the following sections.

3.3 Documentation of architecture

The process used for documenting the architecture in this document is based on IEEE 1471
"Recommended Practice for Architectural Description for Software-Intensive Systems" (IEEE1471,

2000). This standard establishes a methodology for the architectural description of software-
intensive systems. One main part of this methodology is the use of viewpoints: collections of

patterns, templates and conventions for constructing one type of view. One example is the

functional viewpoint (and therefore a functional view) which contains all functions that the system

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 11 of 69 Submission date: 28th February 2014

should perform, the responsibilities and interfaces of the functional elements and the relationship
between them. These functions can be described using UML diagrams. Moreover, it also describes

which stakeholders need to be involved and how to apply their needs in the architecture as stated in

the "architectural perspectives" chapter by Rozanski and Woods (Rozanski - Woods, 2005).

In the initial version of the architecture we decided that the three most important viewpoints are the

functional viewpoint, the information viewpoint and the deployment viewpoint from which the views
of the architectural document are derived.

• Functional viewpoint (section 4): This viewpoint describes the functional elements needed to

meet the key requirements of the architecture. It will present proposals in a descriptive way
and UML diagrams will assist in the understanding of the proposal. It will describe

responsibilities, interfaces, and interactions between the functional elements.

• Deployment viewpoint (section 5): This viewpoint describes how and where the system will

be deployed and what dependencies exist, considering for example hardware requirements
and physical restraints. If there are technology compatibility issues, these can be addressed

in this viewpoint as well.

• Information viewpoint (section 6): The information viewpoint describes the data models and

the data flow as well as the distribution. The viewpoint also defines which data will be stored

and where. The description of where data will be manipulated is also part of this viewpoint.

To address quality properties and cross-cutting concerns, architectural perspectives will be used. A
typical example is security (section 7.1): it should be considered how the data is secured and which

functional elements need to be protected. Another perspective that is of concern for ALMANAC is
scalability (section 7.2).

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 12 of 69 Submission date: 28th February 2014

4. Functional view

This chapter gives an overview over the different components, their functionality, their interfaces,

and their interactions. The functional view addresses concerns of all stakeholders. The overall

component diagram of the ALMANAC SCP is outlined in Figure 3.

Figure 3 Component diagram of the ALMANAC platform

4.1 Overview of components

The ALMANAC platform is intended to be a middleware hosting multiple forms of applications; this
function is also reflected in the list of its components. There are four tasks that can be considered as

the main services provided by the platform to the applications:

• Interoperability over devices: Enabled by the Smart City Resources Adaptation Layer

(SCRAL), applications can access any kind of devices, whichever proprietary protocol they

may speak, over a uniform web-service based interface. Additionally to this service, the

SCRAL exploits any kind of meta-, and semantic information of appearing devices and feeds
them into the Virtualization Layer.

• Virtuality of services: Enabled by the Virtualization Layer, the applications relying on the

middleware do not have to know where the services or devices they consume are placed, or
whether they actually exist. The Virtualization Layer provides service look-up mechanisms

that bridge physical network boundaries, or can even wrap arbitrary data-sets – like historic

measurements or cached values – as consumable services.

• Composition of rules and caching of data: There are multiple scenarios, where applications

are not interested in current device values, but would rather like to be informed if specific

thresholds are met, or see trends for particular intervals: this capability is provided by the
Data Management entity. The component directly grabs data coming from devices, and by

parsing and indexing it, enables later complex querying. The rules or mechanisms that the
Data Management entity should execute are either specified directly by applications, or

indirectly through the Virtualization Layer.

• Considering privacy policies of individual providers: While mainly required by providers of

services and data sets, applications can also greatly benefit from knowing that they cannot

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 13 of 69 Submission date: 28th February 2014

run into the threat of invading privacy of individual services they consume. Service and
device providers individually define policies regarding data they provide; these policies are

enforced through multiple Policy Enforcement Points (PEP) throughout the platform, thereby

enabling applications to access only the data and functionalities for whom they have explicit
access rights.

4.2 List and description of components

This section elaborates in more detail the high level components that have been introduced
previously. Each component has its own subsection, where underlying concepts, subcomponents and

services are introduced; additionally further dependencies between high level components are
analyzed.

4.2.1 Smart City Resources Adaptation Layer (SCRAL)

The Smart City Resources Adaptation Layer (SCRAL) exposes in RESTful fashion any standard or

device-specific interface made available by concrete devices, systems and services (i.e.

PhysicalDevices) towards all other components of the ALMANAC platform. The SCRAL exposes
functionalities made available by devices through a self-described and annotated REST interface.

Examples of the exposed features include e.g. devices related to water supply and waste
management (at home level and at “utility” level – water distribution network, waste collection

network); people – to enable citizens’ involvement in the Smart City process (participatory sensing; -

third-party services and systems e. g., open data sources, weather forecasting or traffic monitoring
services).

The SCRAL externally exposes the following open APIs:

SCRAL API Description Examples

SCRAL-EndpointAPI A RESTful interface exposing all the sensing

and actuating features made available by
PhysicalDevices. It is generally consumed by

the Data Management layer to receive data or

directly by applications to control devices.

This API does not ensure any kind of semantic

interoperability, focusing only on exposing
devices features.

GET /devices/51/channels/3/value

POST /devices/51/ctrl/5/ON-
control

AddDeviceMeta A client interface towards the Virtualization

layer, used to signal registration or de-
registration of concrete devices. It is used to

transfer to the Virtualization Layer all kind of
meta-information which can only be

discovered from the Physical Devices.

“Device X implements the
TemperatureSensor cluster as
defined by the ZigBee standard
Home Automation 1.1”

PEPInterface Policy Enforcement point used to control

device-specific security aspect

“Is user X authorized to read
value of water meter?”

The internal composition of the SCRAL follows a modular, plug-in based approach both towards

Physical Devices and towards heterogeneous cloud platforms as described in Figure 4.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 14 of 69 Submission date: 28th February 2014

Figure 4 Smart City Resources Adaptation Layer (SCRAL) component diagram

On the south-bound part i.e. the part of the SCRAL in charge of integrating heterogeneous devices,
the SCRAL hosts one or more SCRALDriver components. SCRALDrivers are used to wrap and isolate

all device- or standard-specific implementations- used to access Physical Devices.

The north-bound part, i.e. the part of the SCRAL in charge of exposing REST resources towards the
overall ALMANAC platform, is implemented through the SCRALConnector components. The

SCRALConnector follows a REST model, although other connectors might be optionally available (i.e.
SOAP connectors or event-driven connectors), derived from previous projects1. The SCRALConnector

is the main component in charge of exposing the SCRAL Open API.

In the middle part, the SCRAL includes a set of core components which are used to map the south-
bound devices features with the north-bound exposed resources2.

1ebbits (http://www.ebbits-project.eu)
2 All internal interfaces will be specified more in details in the future deliverables from task T5.1.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 15 of 69 Submission date: 28th February 2014

Normally, the SCRAL is deployed as close as possible to the concrete Physical devices (e.g. on
IoTGateways) to enable fast and reliable access. In some configurations it can also be hosted in

cloud-like environments e.g. when it is used simply to wrap or reflect complete platforms e.g. the

ETSI-M2M NSCL (Network Service Capability Layer).

Features to be specified more in details in future iterations

The SCRAL has also the goal of exploiting context-awareness techniques applied from bi-directional

data synchronization, thus ensuring that the information available within the ALMANAC platform is
kept up-to-date with information from the physical world at an optimal rate; minimizing network

traffic and consumption related to data synchronization logics.

These features will be considered in the future iterations of the architecture.

4.3 Virtualization Layer

The Virtualization Layer is a component within the Abstraction Framework. It is a component that
enables search, lookup and addressing of services registered to the ALMANAC platform. Through the

Virtualization Layer, applications can communicate with the ALMANAC platform, for example they

can show ALMANAC data to e.g. citizens or city authorities. Applications can access the full
functionality of ALMANAC connected IoT resources, including actuation of IoT devices. The

Virtualization Layer accepts queries using “real world” terms. This could be postal addresses or GPS
coordinates, sensor type and exposes functionality. It will convert the query to an ALMANAC internal,

URI-based addressing scheme, enabling applications to communicate directly with the IoT devices,
or access the devices specifically through the ALMANAC platform. The Virtualization Layer will

understand a number of ontologies used by the other components of ALMANAC and corresponding

semantic queries. Furthermore, the Virtualization Layer will implement a reasoning algorithm, based
on a set of internal rules, to decide whether the data needed to answer the query is required from

either:

• A cache of historical data provided by the Data Management

• Fresh data from the devices themselves, by querying them through the Adaptation Layer (in

particular the SCRAL, cf. Figure 4).

Clients will be querying the Virtualization Layer using REST to access resources and defines two

kinds of requests (cf. Figure 3), namely “Service Data Requests” and “Service Lookup Requests”.

Service Lookup Request

The Service Lookup Request offer a way to discover the data sources matching a number of criteria.

This service is the point of entry for clients who want to gain knowledge of the underlying network
of devices.

Upon reception of a request, the “Service Lookup” performs the following tasks:

1. Translate the “real world” criteria to internal references

2. Use a set of internal rules to decide what ALMANAC component to address, such as the Data

Management Framework, specific atomic IoT resources or composite resources.

3. Return a list of matching data sources, with in particular their URI uniquely identifying the

source of data in the ALMANAC infrastructure. The response will also contain information
about the caching policy of the data i.e. how long this lookup is supposed to be valid, and

can thus be cached by the client.

The client application may subsequently decide to query the discovered data sources directly
through the Adaptation Layer, or use the Service Data Request described below. The Service Lookup

Request is also used behind the scenes by other ALMANAC components.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 16 of 69 Submission date: 28th February 2014

Service Data Request

The Service Data Requests offer a higher level of abstraction for the client applications. The requests
may be used when clients are interested in some data without necessarily having a good

understanding of the underlying architecture. In particular, such requests require neither knowledge
of the different types of sensors, their behaviour nor their organisation. Clients must pass the

resource URI obtained by a Service Lookup Request, to the Service Data Request service. In order to

fulfil a request, the Virtualization Layer will:

1. Validate the provided data source URI

2. Call the source of data referenced by the URI with the appropriate parameters, some of
them being potentially automatically generated

a. When addressing the Data Management, it may be needed to ask the Data
Management to compose a new rule.

3. Process the data if needed for example transform the format

4. Return the results.

4.4 Data Management Layer

The Data Management Layer provides functionality for

• publishing and subscribing to data streams for components within the ALMANAC Cloud as

well as end user applications outside ALMANAC.

• requesting values from resources in the system (sensors and aggregates of sensor data).

• building aggregates of data streams using ontology concepts.

• providing scalable storage for sensors and aggregates of sensor data.

The Storage manager provides distributed, scalable storage for the other components. Publish and

subscribe functionality is handled by the Event Manager. The component used to create aggregate
data streams is called a Semantic IoT Resource (SITR). Calculation of aggregate values occurs on

request or when events are recieved from data sources. In the case that the calculation of

aggregate values needs to be scheduled, the Activation Manager is used.

Figure 5 Data Management Framework functionality

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 17 of 69 Submission date: 28th February 2014

4.5 Policy Management Framework

The Policy Management Framework provides policy-driven, access protection for IoT-devices and

applications, building on the XACML (eXtensible Access Control Markup Language) standard
(Rissanen, 2010). The Policy Decision Point (PDP) is responsible for making the access decisions

based on the XACML request it receives from a Policy Enforcement Point (PEP) and the set of

policies that have been published to it. By the means of Policy Information Points (PIP) it is possible
to handle even more complex authorization requests, as PIPs can help a PDP in resolving attributes

that are not included in a request. An illustration of this basic structure can be seen in Figure 6.

Figure 6 Reference architecture for XACML

The mechanism of PIPs will also be the attachment point for the federated authentication

mechanism necessary for the proper privacy protection within the Smart City Platform. Federated

authentication is about delegating and conceptualizing the authentication to Identity Providers and
can be seen as a superset of Single Sign-On. The authentication itself is performed by a set of

trusted set of Identity Providers thereby removing the need for users to directly authenticate against
each and every service. As realization engine for the federated authentication, we chose the Security

Assertion Markup Language (Madsen et al, 2005). SAML 2.0 is a very mature standard and can very
well cooperate with the foreseen XACML authorization framework.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 18 of 69 Submission date: 28th February 2014

5. Deployment view

This view describes how the ALMANAC platform can be deployed on the field i.e. in concrete

Platforms (e.g. servers, Cloud Infrastructure, embedded systems on the field, PhysicalDevices) and

concrete execution environments (e.g. LinkSmart, etc.).

A simplified deployment configuration is described in Figure 7.

Figure 7 Deployment view, simplified configuration

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 19 of 69 Submission date: 28th February 2014

Most of the functional components handling resources and applications for the Smart City as a whole
are hosted in the Cloud-based infrastructure, running within a LinkSmart-based execution

environment.

Most of the field components handling direct interaction with Smart City Resources are instead
deployed within IoT Gateways i.e. low-cost embedded devices able to run LinkSmart. A number of

“local” features are at the moment identified on the IoT Gateways e.g. to support local storage or
aggregation of data. These features are currently not specified in details, but hey have been

foreseen at this stage to support future scalability-critic scenarios. IoT gateways are in a many-to-
many relationship with the Cloud-based infrastructure, as the same gateway could be inter-

connected with several instances of Smart City platforms e.g. hosted by different organizations.

Various features hosted by specific devices (e.g. DLMS/Cosem devices or ETSI-M2M devices) are
deployed on-board devices and exposed towards the ALMANAC platform through the SCRAL, running

on IoT Gateways.

Figure 8 outlines a slightly different deployment scenario, involving ETSI-M2M gateways.

Figure 8 Deployment view, ETSI-M2M Gateway scenario

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 20 of 69 Submission date: 28th February 2014

In case a pre-existing standard gateway exist already on the field, it can be accessed locally by the
ALMANAC IoT Gateway through a dedicate SCRAL Driver (i.e. the ETSI-M2M GSCL Client Driver).

This case has been considered at this stage for ETSI-M2M gateway, but it could also apply to other

technologies where a need to locally inter-connect a standard gateways e.g. OMA Lightweight or
Wireless M-Bus occurs.

Figure 9 finally, outlines a deployment scenario where an ALMANAC infrastructure is required to
inter-operate with a pre-existing ETSI-M2M infrastructure.

Figure 9 Deployment view, ETSI-M2M Platform scenario

In this case the ALMANAC platform accesses the ETSI-M2M platform through a cloud-hosted SCRAL

Driver implementing a full-fledged ETSI-M2M NSCL Client, which in turn exposes all the resources

managed by the ETSI-M2M platform. As an extension of this ETSI-M2M-centered scenario, ALMANAC
also foresees the case where the IoT gateway can join a standard ETSI-M2M network by

implementing a SCRAL ETSI-M2M Connector acting as a standard GSCL.

5.1.1 Network View

ALMANAC does not foresee the deployment of dedicated networks to support Smart City

applications. At this purpose, the ALMANAC network architecture strives to maximize the re-use of
pre-existing communication infrastructure both on the capillary and the core network segments, at

the same time devising techniques to achieve an adaptable and scalable networking solution for
smart cities.

A view of the ALMANAC network is described in Figure 10. The ALMANAC platform is an internet-

oriented middleware-based distributed system. It is accessible from any system directly joining the
middleware domain (i.e. as a LinkSmart entity) or also by any type of internet-oriented application

(e.g. mobile applications, web applications, etc.) through Open Cloud-based APIs.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 21 of 69 Submission date: 28th February 2014

Figure 10 ALMANAC Network View

IoT Gateway are IP-based devices and can be thus directly interconnected to the internet or, in case
this is not possible, can leverage heterogeneous Access networks to reach the ALMANAC platform.

Examples of Heterogeneous access network include e.g. 3G mobile networks, public Wi-Fi networks.

From the networking point of view the ALMANAC IoT Gateway has also the role of inter-connecting
several types of local wireless network i.e. capillary networks. Capillary Networks are a flexible and

autonomous communication networks normally use to locally collect information from sensors and
actuators in the smart city. Examples of capillary network include short-range networks based on

Wireless M-Bus or DLMS-Cosem e.g. for utility metering (gas, water, electricity), collection of waste
management data, pollution and traffic control sensors, smart lighting sensor, heating control

sensors, etc.

The main reason for devising capillary networks is to avoid excessively extended deployments of
traditional infrastructures which may be too expensive and energy consuming when considering

millions of metering devices that should be able to work several years without battery changes and
that generate a fairly limited data traffic.

Waste Management and Water supply network examples

In Figure 10, the water supply network and the waste management are brought as examples of

concrete capillary networks used in ALMANAC.

The capillary water supply network integrates water leak sensors and flow meter sensors -among

others- to monitor the water consumption behaviour of the city and eventually detect possible issues
related to this matter. In this capillary network, water metering sensors can communicate via an IoT

gateway through different network interfaces such as ZigBee, Bluetooth, 6LoWPAN, Wi-Fi, etc. The

sensors in the water supply network are considered to work using the DLMS/COSEM standard, but
the design

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 22 of 69 Submission date: 28th February 2014

Figure 11 Water Supply Network

In the he capillary waste management network, fill level sensors are integrated with meteorological
data and geographical location in order to obtain virtual sensors, that can provide information useful

to predict possible issues related to the waste collection, or to forecast the waste generation
quantities in a determined area. Analogously to the water supply network, in this case sensors can

communicate to the IoT gateway using different network interfaces.

Figure 12 Waste Management Network

5.1.2 Notes on Federation Issues

Federation of multi-service IoT networks is a key issue in ALMANAC. Although specific activities to
tackle federation issues will officially start in the second iteration of the project, the consortium has

anticipated some work to scope the main rationales and definitions related to federation in the

current iteration.

In general, federation is seen in ALMANAC as a “pattern” which allows two independent IoT

networks to interoperate and share some capabilities. While interoperability is a pre-requisite for
federation, it is important to stress that federation is not limited to the ability of two network to

exchange some data, but is always based on some explicit agreement by two parties operating two
independent IoT systems.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 23 of 69 Submission date: 28th February 2014

A known example of federation which has been taken as inspiration is the case of roaming in mobile
cellular networks, where a user can authenticate with a remote network by leveraging on a set of

known standards and agreements between telecommunication operators in different countries.

In the following, a number of federation related assumptions are reported: they will be considered in
the current iteration and then researched more in detail in the second year of activities.

1. In ALMANAC, federation could be considered at different layers e.g.

• at capillary level: a sensor operated by “IoT Network A” might be able to join a third-

party capillary network or gateway operated by “IoT Network B” thanks to a federated

authentication mechanism; this could be useful to seamlessly allow sensors to use the
communication infrastructure provided by a third-party operator.

• at access-network level: a gateway operated by “IoT Network A” (e.g. the waste

company) might be able to use the access network (e.g. Wi-Fi) of a third-party operator

(e.g. the municipality or even a private user) thanks to a federated authentication
mechanism.

• at service level: an instance of the ALMANAC platform operated by “IoT Network A”

(e.g. a municipality) might be able to access with a pre-defined granularity to data and
events provided by “IoT Network B” (e.g. a water company, or another city);

2. There are a set of different services which might be federated e.g.

• Authentication/authorization/access (network A can authenticate devices or users of

network B)

• Network management capabilities (network A can monitor devices of network B)

• Databases or Storages (network A and network B can decide to jointly expose a data

storage towards a third-party service)

3. There are different reasons to use federation in ALMANAC:

• to support data and devices from a pre-existing network into ALMANAC (e.g. to

seamlessly integrate device and data from the energy monitoring network and jointly

offer water and energy management services)

• to provide services which need data which can only be obtained by multi-service

networks operated for other reasons by different utilities

• to share data and functionalities across platforms operated by different cities (e.g.

Torino and Santander) or organizations (e.g. as in enterprise mashups).

4. Since ALMANAC has adopted a broader definition of federation, it does not make sense to
define a dedicated component (e.g. a proxy) to cope with federation issues; on the other

hand, federation is more seen as a “pattern” which must be followed by all components of
interest inside the ALMANAC Platform.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 24 of 69 Submission date: 28th February 2014

6. Information view

6.1 Overview of information flow

The information view is based on the abstractions of Smart City Resources, in terms of Semantic IoT

Resources corresponding to Virtual Entities in the IoT ARM (Domain and Information models) (Bassi
et al., 2013).

Figure 13 Example application domain model

The application domain model does not reside in the Data Management Layer which uses a resource
model which represents resources with properties and data streams of observations of the state of

these properties. The metadata for the resources and the properties refer to the concepts of the
domain model.

Resources have a set of properties which have current state, a history and may have a prognosis.

Measurements or observations of the state of a sensor or other resources are recorded with the time
at which the value represented the state of the property. In addition, a time stamp for when this

state observation was made is also recorded. A historical value may be updated with a revised value
without replacing the first observation, and forecasted values may be represented in the same data

stream as the observations that were actually made.

6.2 Description of information flows

Connecting concepts in the domain ontologies to the device ontologies is done at design time, when

a new sensor is introduced in the ALMANAC system, or when a new Semantic IoT Resource is

defined. The meanings of properties and their sets of observations (data points) are defined in the
ontologies and represented and referred to at run time with the identifiers of the classes and

instances in the ontology. Queries and rules use these identifiers to filter data without accessing the
ontologies at run-time.

The devices, their properties and the sets of observations for a property and the metadata for them
are made available to the ALMANAC system as REST resources. The addressing of the resources will

be similar whether a SITR is accessed directly and the value is computed (e.g., GET

http://datamanagement.almanac-project.eu/FillLevelSensor/Properties/FillLevel) or this value is
fetched from the Storage Manager (e.g. GET http://storagemanager.almanac-

project.eu/FillLevelSensor/Properties/FillLevel). Access control for external clients is handled before
the request reaches the Data Management Framework.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 25 of 69 Submission date: 28th February 2014

Figure 14 Data storage and domain model

External clients may also subscribe to changes in the properties of SITRs via the Event Manager.

Like data requests, these subscriptions must also go through access control.

Figure 15 Defining a Semantic IoT Resource

When a new sensor or device is added to the system, metadata such as caching information and

value type (e.g. “xmlns:xs=http://www.w3.org/2001/XMLSchema” “xs:string”, “xs:int”) and
references to classes in the ontologies are added to the Data Management Framework. A

subscription to the data from the device is set up in the Event Manager so that the device publishes
new data at the Event Manager; the Storage Manager is notified by the Event Manager and can

store the data.

Data will continuously stream in to the Data Management framework via the Event Manager; directly
requesting values from a device will be the exception and not the rule.

Sometimes the Virtualization Layer will query a device directly for data. The Virtualization Layer will
not have to update the Data Management Framework with the data, as there should be a

subscription set up for this already. The new sensor data will be entered into the Data Management

Framework as a side effect of the Virtualization Layer requesting a new value since the Data
Management Framework subscribes to property updates from the SCRAL.

6.2.1 Current or latest values

The current value for a property of an IoT Device or Semantic IoT Resource is the latest value for

which the “Cache-valid” attribute still applies at the current system time. If the current value

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 26 of 69 Submission date: 28th February 2014

requested in the Virtualization Layer, caching instructions can be used to let intermediaries return
the latest value stored in the Data Management Framework or request the current value at the

device from the SCRAL.

Figure 16 Requesting the latest, still valid, value for a property

If the Data Management Framework has received a value for this property and the specification of

this property states that the value is to be considered still valid, there is no need to query the device
directly. It is likely that the Storage Manager will use optimized storage and handling for the latest

values for data streams so checking if the cached value can be used should not have a significant
impact on performance.

{
"Property": {
"DataType": "System.Double",
"Id": "FillLevel",
"Observations": {
"StateObservation": {
"ObservationTimestamp": "2014-02-03 22:30:01",
"Timestamp": "2014-02-03 22:20:01",
"Value": "80"
}
},"Cache-valid":"300",
"TypeReference":"ontologies.almanac-
project.eu/SmartCity20140202#FillLevel"
}
}

When the REST resource that is the property of a SITR or Device is requested, the latest stored

value will be returned as part of the representation by default. This way, if the value is considered
current or not, may be determined by just inspecting the representation and compare the

Timestamp plus the Cache-valid timespan to the current system time. The Virtualization Layer and

the applications in the call chain before it may themselves decide if the data is “current enough”;
this depends on requirements of the end-user application.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 27 of 69 Submission date: 28th February 2014

Figure 17 Requesting the latest, but now invalid, value for a property

The Data Management layer will always return the latest stored value. If the latest value stored is
current (i.e., cache time has not expired) or not will not be evaluated with each call to the Data

Management Layer. The logic for this is not complex, but continuously evaluating this and possibly
accessing the device directly may have an impact on performance and make the system less

predictable.

6.2.2 Historical values

Historical values are stored in the Storage Manager. Ad-hoc queries are not handled by the Semantic

IoT Resources directly but rather by the Storage Manager.

Sets of data points from devices or SITRs are REST resources that may be filtered by time or other

attributes. Some aggregator functions, e.g., main, max and average, may be applied to these. This
may be used for simple queries.

http://energyportal.cnet.se/DataPortalStorageManager/StorageManager/iotent
ities/SM-7:C9/properties/consumption/observations?take=5&after=2013-12-
03%2022:02:00

http://energyportal.cnet.se/DataPortalStorageManager/StorageManager/iotent
ities/SM-7:C9/properties/consumption/observations/max?take=5&after=2013-
12-03%2022:02:00

Aggregates using historical values are created using SITRs. An aggregate value is represented as a

property on a STIR. These properties may be calculated when the value is requested, on the

reception of an event or on specific intervals.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 28 of 69 Submission date: 28th February 2014

7. Perspectives

7.1 Security perspective

The security components offered by LinkSmart provide basic functionality to protect communication

and entities from malicious activities. The ALMANAC project will build on these components to create
its more sophisticated procedures as they require basic security services. We also improve these

components as the processes that ALMANAC supports have stricter requirements like performance

and accounting. In this subsection we briefly introduce these components; later deliverables will
then more specifically specify the security perspective of the architecture.

7.1.1 Crypto Manager

Cryptographic operations are required for protecting the middleware communication from

eavesdropping and modification, for authentication of devices and users. These components are

merged in the so called Crypto Manager which serves various services like the creation and
verification of digital signatures, encryption and decryption and generation and confidential storage

of keys. The Crypto Manager will be improved to provide further cryptographic operations, mainly
for symmetric key operations as they are better performing. We also add usability features to be

accessed through the open APIs, which should help the users better understand the process of

protecting their goods.

7.1.2 Trust Manager

The Trust Manager can be used to verify if a token offered by an entity is trustworthy. The decision
if an entity is the legitimate owner of a key is based on trust models. The Trust Manager can

implement any kind of trust model taking a token as input and returning a trust value as response.
Two implementations are already available in LinkSmart, one for PKI and one for Web of Trust.

Development on the Trust Manager aims at improving the cooperation between Network Manager

and Trust Manager. Network Manager is only able to use X.509 certificates to protect the
communication and can therefore not exploit all the functionality the Trust Manager has to offer.

7.1.3 Communication Security Manager

To protect the message exchange between entities security protocols and cryptographic operations

have to be applied. This is a combination of the services offered by Crypto Manager, Trust Manager

and a protocol specification. There are different Communication Security Managers which can be
linked to the Network Manager. They provide different protocol implementations and fit for other

requirements. For example if there is only rare message exchange it is better to use pure
asymmetric encryption without sessions but for busy channels the resources used to set up a session

are negligible compared to the performance gained by using symmetric security.

7.2 Scalability perspective

The Data Management Framework achieves scalability by

• Reducing message sending by leveraging the LinkSmart publish-subscribe infrastructure

(Event Manager) and network transparency (Network Manager), letting the Event Manager
partition and delegate the calling of subscribers.

• Delegating aggregation and rule evaluation for sensor data to Semantic IoT Resources, data

processing services distributed on different nodes in the ALMANAC cloud.

• Storing data in a distributed database for both sensor data and aggregated data. Short-term

data needed for real-time processing may be stored directly on the preprocessing nodes.

• Using caching to replace actual calls to IoT Devices or Semantic IoT Resources. REST calls
will use the standard context-expires header or redirection to stored data if the resource

instance is not accessible.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 29 of 69 Submission date: 28th February 2014

Figure 18 Example of distributed components in the Data Management Framework

7.2.1 Event Manager

The data from an IoT Sensor or IoT Device may be requested by a large number of applications and

Semantic IoT Resources. The data also has to be transferred to long-term storage. To minimize the
number of connections, and make the load on the IoT Device smaller in the case of a huge number

of subscribers, the LinkSmart Event Manager will be used. It will be extended with the necessary

functionality to let several Event Managers co-operate and use load-balancing to service publishers,
corresponding to Event Processing Agents (EPAs) in an event processing network, and subscription

partitioning for publishing. The Network Manager will provide network transparence and uniform
lookup and addressing of IoT Devices and Event managers.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 30 of 69 Submission date: 28th February 2014

7.2.2 Semantic IoT Resources

Semantic IoT Resources will handle aggregation of data and react to data patterns and raise events.
These will represent domain entities or services needed by the end user applications. They may also

be connected in a pipes-and-filters style to create more complex sets of aggregated data. BY
distributing these on different nodes in the system, adding new nodes if necessary, complex

aggregates may be constructed, executed efficiently, and re-used.

7.2.3 IoT-cloud enabled Storage Manager

The data generated by sensors and resources will be stored by the Storage Manager service. Data

will be distributed by the Storage Manager over the nodes in the ALMANAC system and optimized for

the scenarios in ALAMANAC where short-term storage and long term storage are used in different
scenarios. Storage will be transparent to both devices and resources producing data and resources

and smart city consumers. Data is accessed by REST-based interfaces with URI structure and
semantics like the other interfaces in the Data Management Framework, making call forwarding and

caching simple.

7.2.4 Caching

Each property of a resource (e.g., a data stream from a temperature sensor or an aggregated value

from a SITR) will have an attribute specifying the default amount of time the data stays valid in the

cache. Within this time period, the ALMANAC system will not query the device directly for data but
instead use the latest value from the Data Management Layer. The cache timespan information can

be supplied with the Content-Expires header to let clients and intermediaries cache the information.

If the content-expires header indicates that an intermediate cache may be used, the request need

not go any further. If the resource or device is not accessible within a set time span, the latest

stored data will be used. Since getting the latest values for a device or resource is a frequently
occurring case, the Storage Manager may also use a dedicated database to handle these requests.

This way, there will be a minimum wait time to get the latest data from a device or resource.

To let the client specify desired server behavior, the HTTP Cache-Control and Expect headers can be
used and possibly extended (this is allowed in the specification3) to handle requirements from the

3 http://tools.ietf.org/html/rfc2616

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 31 of 69 Submission date: 28th February 2014

client, e.g. that the response should be returned within a certain time period, that cached values
always should be used or that cached values always never be used.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 32 of 69 Submission date: 28th February 2014

8. Supporting infrastructure: LinkSmart

In our previous architecture discussions and illustrations we did not include components specific to

LinkSmart. LinkSmart will be the underlying infrastructure for the ALMANAC platform and has

multiple effects on the realization and design patterns we will apply. This chapter has the purpose of
providing a brief introduction to LinkSmart and a glimpse of the services it provides that are

beneficial for ALMANAC.

8.1 Introduction of LinkSmart

The LinkSmart middleware has been developed in the European project Hydra4. Hydra was a 4-year

integrated project co-funded by the European Commission within the Sixth Framework Programme.

The LinkSmart middleware allows developers to incorporate heterogeneous physical devices into

their applications by offering easy-to-use web service interfaces for controlling any type of physical

device irrespective of its network technology such as Bluetooth, RF, ZigBee, RFID, Wi-Fi, etc.
LinkSmart incorporates means for secure peer-to-peer (P2P) communication, device and service

discovery, and respective developer tools.

The choice of a service-oriented architecture (SOA) in the Hydra project turned out to be a viable

and successful approach as SOA applies to both the implementation of the middleware managers

themselves and for the higher-level device interfaces in the form of software proxies, i.e., devices
are also web services in LinkSmart. The SOA implementation works well across platforms as well as

network boundaries. The system behind LinkSmart is implemented on two main IDEs, Eclipse and
.NET and also provides P2P device interoperability across networks. As the LinkSmart middleware is

based on SOA, to which the underlying communication layer is transparent, it includes support for
distributed as well as centralized architectures, security and trust, reflective properties and model-

driven development of applications.

Several successful applications have been developed to evaluate the LinkSmart middleware in
different domains of Ubiquitous Computing including eHealth and (Energy-aware) Smart Homes (Al-

Akkad et al., 2009), (Eikerling et.al, 2009), (Jahn et al., 2010), (Reiners et al., 2009).

8.2 Architecture of LinkSmart

The software architecture described here is an abstract representation of the software part of the

LinkSmart middleware. The architecture is a partitioning scheme, describing components and their
interaction with each other. Figure 19 shows the concrete deployment of LinkSmart managers on the

specific network components. Each Native Device is connected through the Network Manager. A

Gateway further hosts a couple of proxies for closed platform devices (e.g. commercial off the shelf
Bluetooth and ZigBee devices).

The gateway must run a Network manager that registers all services belonging to the devices in the
LinkSmart network. Moreover, on the gateway a Device Application Catalogue (DAC) can keep track

of devices available in the LinkSmart network.

The LinkSmart Application runs on a PC as a dedicated application (i.e. a centralized architecture).
The application can access specific services through the network manager if it knows in advance

which services it wants to use.

Alternatively, the application can browse the devices on the DAC first, based on specific criteria and

access their services.

4 http://www.LinkSmartmiddleware.eu

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 33 of 69 Submission date: 28th February 2014

Figure 19 LinkSmart Example Concrete Deployment

The EventManager handles the publishing and the subscribing of events. Applications can subscribe
to an EventManager for a topic they are interested in or publish events, for example events

containing sensor measurements. An event consists of a topic and key-value pairs.

The TrustManager and the CryptoManager are optional components. Their purpose is to increase
security and robustness of the system.

In Figure 20, we see an example of a LinkSmart device network. LinkSmart distinguishes between
powerful devices which are capable of running the LinkSmart middleware natively and smaller

devices that are too constrained or closed to run the middleware. For the latter, proxies are used
and once proxies are in place, all communication is based on the IP protocol.

The figure below illustrates these two device types. On the right, there are devices which can host

the LinkSmart middleware and which are able to establish communication with services on the
platform. On the left, devices are depicted which cannot operate the LinkSmart middleware, either

because they have resource constraints or proprietary interfaces. For these devices proxies are
created on a Business Area Network or a Personal Area Network node (in this case a mobile phone).

For a service the communication with a proxy is not any different from communication with a

LinkSmart enabled device.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 34 of 69 Submission date: 28th February 2014

Figure 20 LinkSmart Example Device Network

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 35 of 69 Submission date: 28th February 2014

9. Technical use case instantiation

This section details some selected use cases to clarify how the ALMANAC SCP behaves to deliver

some specific features of interest. Technical use cases described in the following can be seen as

more generalized and low-level use cases, which are normally employed across several application
scenarios (e.g. waste management, water supply, civil engagement).

9.1 Technical use case: Data collection and rule based notification

This scenario describes how aggregation of real-time data flows can be configured to derive
additional information and how an end user application may describe the conditions for when it

wants to be notified about changes in this information. It also describes the way that the system
does rule-based notification events to clients; Smart City Apps or Semantic IoT Resources.

 We have identified three categories or roles for ALMANAC developers.

• IoT Device-developers, who develop Virtualization Layer components interfacing with the

ALMANAC system.

• Smart city object-developers, who develop virtual entities / Semantic IoT Resources that

gather data and aggregates the data into new information.

• Smart city app-developers, who uses the data published from IoT Devices and Semantic IoT
Resources to build end user functionality for the smart city.

 To explain the use case, we need to provide instantiations for use cases both at design time and
run time.

9.1.1 Design-time scenario

The provider of the Smart City defines or uses an application domain model / ontology with the

relevant concepts/classes for the application at hand. This model may also be extended by IoT
Device-developers.

 The supplier of an IoT Device, a fill-level sensor on a waste bin in this case, "plugs" the sensor into

the ALMANAC system by using the concepts in the ontology to describe the data reported by the IoT
Device. This relates the sensor data to the observable property (e.g. " FillLevel") in the application

domain model (with applicable reliability, relations to other properties, etc. also modeled).

 The data reported by the SCRAL (IoTDevice) for the property “FillLevel" is now:

1. Possibly annotated with a reference to the type "FillLevel" if this is supported at the

IotDevice/Virtualization layer level and

2. Referenced in the instance ontology to have the type "FillLevel".

This is done via the Cloud API and the Virtualization Layer.

The smart city object developer defines a Semantic IoT Resource for "WasteBin" (see Figure 15
Defining a Semantic IoT Resource) and uses the ontology and the Cloud API to find the property

type "FillLevel" and the installed IoT Device (sensor) reporting "FillLevel" and then either:

a. let the virtual entity subscribe to data from the specific sensor or

b. let the virtual entity subscribe to data from all IoT devices reporting "FillLevel" in a specific

location.

The data from "FillLevel" is stored in the property "FillLevel" of "WasteBin". The developer also

provides a rule for how this data should be processed together with data from a weather service to
update a new property, "Smell", of "WasteBin". This new property will also be added to the

ontology.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 36 of 69 Submission date: 28th February 2014

 The smart city app developer asks the Cloud API for the current value of the "Smell" property for

"WasteBin". The value of this property is then calculated. If the smart city app wants to be notified
of issues or specific events, a publish-subscribe model is used, and the smart city app subscribes to

events for changed smell values.

 Run-time scenario

Figure 21 Calculating the aggregate value "Smell" when a new temperature value is received

The waste bin sensors report data to the SCRAL/IotDevices or data is read from the sensors by the

SCRAL/IoT Devices. The data is reported into the ALMANAC Cloud via an Event Manager. The event
manager forwards this data to the semantic IoT resource.

When the Semantic IoT Resource receives new temperature data, it processes the data according to

its internal rules, in this case the temperature is above the threshold for which the “Smell” property
should be re-calculated. A current value for the “FillLevel” is needed, so this is fetched. The “Smell”

property is re-calculated, and stored in the Storage. Since the SITR is configured to notify others
when its properties change, it will call the Event Manager.

 The end user applications that have subscribed to changes in the SITR property "Smell" are notified

by the Event Manager.

Figure 22 Calculating "Smell" on request

 An alternative scenario is that the SITR is queried for the property “Smell” by the Virtualization

Layer. Since the “Cache-valid” attribute of this property indicates that I should be re-calculated, the

values need to compute “Smell” are requested from other components and the value is re-
calculated. The new value is stored in the Storage Manager and the new value is returned to the

Virtualization layer.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 37 of 69 Submission date: 28th February 2014

9.2 Technical use case: Historic data aggregation and reasoning

When data is reported from IoT Devices or generated by SITRs, the data may be stored locally to
allow rules to be able to process historical data. However, local cache is typically for short time

periods. This scenario describes how data for sensors is stored and accessed in the system in a
scalable way and how historical data is accessed for querying and reasoning.

 The storage manager provides a limited query interface with aggregation functions for sorting, time

span selection, and simple scalar functions such as min, max, average. It will also support map-
reduce like functionality to write more complex queries, however, the main construct for creating

aggregated data is the SITR. It can be configured to analyse historical data and publish a stream of

aggregated data.

Design time scenario

The supplier of an IoT Device, the proxy for a Fill-level sensor on a waste bin in this case, "plugs"

the sensor into the ALMANAC system. This results in a subscription for data from this device by the
Remote Storage Manager. An instance of the Remote Storage Manager is be assigned for this device

according to the internal partitioning scheme.

 To get the lowest fill average level this month, the Smart city app developer defines a set of SITR

that implements this functionality and reports the desired result as the property

“LowestMonthlyAverageFillLevel” (or a set of properties). The query can be executed on-demand or

at scheduled intervals.

 Run-time scenario

The waste bin sensors report data to the Adaptation Layer. These send the data on to the event

manager, which will pass the data on to the subscribers, including the Storage Manager where the
data will be stored.

For aggregation of historical data, the predefined SITR is used. When the end user application

queries the lowest monthly fill level, it requests the necessary historical data from the Storage
Manager and sends the result back. The updated SITR property “LowestMonthlyAverageFillLevel” is

also stored by the Storage Manager.

9.3 Technical use case: Smart City Resource registration

The use case shown in Figure 23 outlines how a new physical device joins the network and it is

discovered and registered by the SCRAL.

Figure 23 Use case: device discovery and adaptation

As described in the sequence diagram in Figure 24, the SCRAL is able to discover a new physical

device and to collect a list of its capabilities (if available) using one of its dedicated SCRALDrivers.
After the discovery phase is completed, the device is exposed as a REST resource (device

adaptation). Consequently, the SCRAL signals and registers the discovered device to the

VirtualizationLayer which interacts with the DataManagement component to create a new or get (if
already existing) a DataManagamentFlowIdentifier.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 38 of 69 Submission date: 28th February 2014

Figure 24 Sequence diagram: device discovery and adaptation

After this sequence is completed, the SCRAL can feed autonomously raw data from device into the
Data Management Layer.

9.4 Technical use case: end-user data access

In Figure 25, a citizen-centric use case is presented, describing how a generic end-user (e.g. a
citizen) is authenticated by the ALMANAC platform and gets access to his personal profile and to his

personal data. In this scenario, ALMANAC matches between the user identity and his personal
consumption monitoring devices (e.g. the water meter provided by the Water utility). Thanks to this

mapping the user can retrieve his own consumption and benchmark it against the average

consumption of the city.

Figure 25 Use Cases: end-user API-driven data access and comparison

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 39 of 69 Submission date: 28th February 2014

Since this use-case is rather complex, it has been divided in a number of sub-cases described in the
following.

9.4.1 User Authentication into the ALMANAC Platform

The process of user authentication is shown in Figure 26. The citizen sends his credentials through
the Cloud-based Open APIs to the Identity Manager, which performs a credential check and replies

sending back an authorization token to the user once his credentials have been verified.

Figure 26 Sequence Diagram: user authentication into the ALMANAC platform

9.4.2 Citizen Personal Profile access

Analogously, once a user has been authenticated is able to access his personal profile, where his
personal data is shown through a dashboard-like interface. This sequence is depicted in Figure 27.

Figure 27 Sequence Diagram: citizen access his personal profile

9.4.3 API-driven Citizen Data Access

In some scenario, the citizen might need to access more specific information derived from some IoT

data collection process e.g. consumption statistics, consumptions history, etc. Such data is not
available through his personal profile; however he can query the VirtualizationLayer though the

cloud-based OpenAPIs to retrieve the specific collection of data from the Data Management
component which matches the metering devices corresponding in turn to his identity. The

VirtualizationLayer requests the DataManagement module the corresponding data which is

processed and sent back to the user.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 40 of 69 Submission date: 28th February 2014

Figure 28 Sequence Diagram: user access to personal consumptions statistics data

Figure 28 does not show how data is fed into the Data Management component. In general this is
ensured by an autonomous data collection process always running across the SCRAL and the Data

Management component after a successful device registration.

9.4.4 API-driven Citizen Consumption Benchmarking

Another possible action the citizen can perform, featured by the ALMANAC platform, is the possibility

to benchmark his personal consumptions against the average consumption of the entire city. This
process is depicted in the sequence diagram from Figure 29.

In this case, the citizen uses the cloud-based open APIs to obtain the comparison of his personal

data with the city data, which is possible thanks to the DataManager that sends back the
corresponding compared data to the user through the VirtualizationLayer and subsequently through

the OpenAPIs. The citizen is able to specify various fields, to narrow down the comparison to a
desired area or time interval.

Figure 29 Sequence Diagram: citizen consumptions benchmark

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 41 of 69 Submission date: 28th February 2014

9.4.5 Extended Use Case: API-driven actuation

While ALMANAC, and more in general Smart City application, do not have a strong focus on control

and actuation issues, this case might happen in some specific professional scenarios e.g. in the

water domain. The use case detailed in Figure 30 details how actuation could be handled in the
ALMANAC architecture.

A generic user (e.g. a Citizen) with adequate access rights can query the Open Cloud-based API to
retrieve the list of Actuators matching some particular properties e.g. a geographical location, or an

address). The request is served by the Virtualization layer, which responds with an Actuator List
eventually interrogating one or more SCRAL instances if a data synchronization is needed.

Figure 30 Sequence diagram: API actuation example

The user can thus browse the features of the actuator and, having selected the action of interest, he

can perform it through a postAction call delivered to the SCRAL and ultimately to the PhysicalDevice.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 42 of 69 Submission date: 28th February 2014

10. References

(IEEE1471, 2000) IEEE Standard 1471-2000 (2000), IEEE Recommended Practice
for Architectural Description of Software-Intensive Systems

(Al-Akkad et al., 2009) Al-Akkad, A., Pramudianto, F., Jahn, M., Zimmermann, A. (2009):
“Middleware for building pervasive systems”. International
Association for Development of the Information Society (IADIS):
International Conference Applied Computing, Rome, pages 1–8

(ALMANAC WP2, 2013) ALMANAC consortium work package 2 (2013), D2.1 Scenarios for
Smart City Applications ALMANAC project deliverable

(Bassi et al., 2013) A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. v. Kranenburg, S.
Lange, and S. Meissner, Eds. (2013), Enabling Things to Talk -

Designing IoT solutions with the IoT Architectural Reference

Model. Springer

(Eikerling et al., 2009) Eikerling, H., Gräfe, G., Röhr, F., Schneider, W. (2009), “Ambient
Healthcare- Using the Hydra Embedded Middleware for
Implementing an Ambient Disease Management System”. In
Proceedings of the Second International Conference on Health
Informatics, Portugal, pages 82–89.

(ETSI, 2011) ETSI, TS. (2011), "102 690:" Machine-to-Machine
communications (M2M)." Functional architecture.

(Jahn et al., 2010) Jahn, M., Jentsch, M., Prause, C. R., Pramudianto, F., Al-Akkad,
A., Reiners, R. (2010). „The Energy Aware Smart Home”. In 2010
5th International Conference on Future Information Technology,
pages 1–8

(Madsen et al, 2005) P. Madsen, E. Maler (2005), SAML V2.0 Executive Overview.
Available: https://www.oasis-
open.org/committees/download.php/13525/sstc-saml-exec-
overview-2.0-cd-01-2col.pdf

(Reiners et al., 2009) Reiners, R., Zimmermann, A., Jentsch, M., Zhang, Y. (2009).
„Automizing home environments and supervising patients at home
with the hydra middleware: application scenarios using the hydra
middleware for embedded systems“.CASTA '09 - Proceedings of
the first international workshop on Context-aware software
technology and applications, pages 9-12

(Rissanen, 2010) Rissanen, Erik. (2010), eXtensible Access Control Markup
Language (XACML) version 3.0 (committe specification 01).
Technical report, OASIS, http://docs. oasisopen.
org/xacml/3.0/xacml-3.0-core-spec-cd-03-en. pdf.

(Rozanski & Woods, 2005) Rozanski, N., Woods, E. (2005), “Software Systems Architecture”,
ISBN: 0321112296

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 43 of 69 Submission date: 28th February 2014

1. Annex: Component descriptions

Component Name

Capillary Network Gateway

Description

The capillary network gateway is an important item of the capillary network. It has two interfaces:

short range radio (169 MHZ – WMBus), mobile IP (3G/4G).

Services

To connect sensors on the field with a short range radio transmitter with IP/Internet Network. The

IP/Internet Network can then transport the data to the servers in the cloud.

Interfaces:

• The capillary network gateway shall interface the Middleware of the M2M Platform
(LinkSmart/Adaptation Layer).

• The capillary network gateway shall interface the TX modules of the sensors (smart meters
and others).

Dependencies

Might have a dependency to the sensors chosen by WP2.

Related Task

Task 4.1: Capillary Networks

Smart City Platform Layer

• Multiservice Federated Networks

API Accessibility

Will any services of this component be accessible through the open APIs?

Yes.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 44 of 69 Submission date: 28th February 2014

Component Name

NetworkManager

Description

The core component for enabling communication within LinkSmart. All devices and software that
wishes to enter the network requires an associated NetworkManager. The NetworkManager directly

interfaces with IdentityManager, BackboneRouter, Backbones and CommunicationSecurityManagers.

Services

Provides naming and addressing capabilities, network federation by switching between Backbones
and CommunicationSecurityManagers. Routing capabilities will be added as well as more advanced

discovery mechanisms.

Dependencies

None

Related Task

T4.2

Smart City Platform Layer

• Communication Management Framework

API Accessibility

• Service Discovery

• Network Management (debugging)

• Service Registration

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 45 of 69 Submission date: 28th February 2014

Component Name

Policy Manager

Description

This distributed component will check at fixed points in the network and software whether required
security policies are met. It will enable the overall security enforcement of information flow and will

have advances features regarding anonymization of information. When external information sources
are made available users will have the possibility to define rules with this component.

Services

Compose policies regarding data

Authenticates and authorizes data flows

Controls data flows whether they meet policies

Does automatic transformation of data

Dependencies

NetworkManager, TrustManager

Related Task

T3.4

Smart City Platform Layer

• Security and Privacy Framework

API Accessibility

• Compose Access Policies

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 46 of 69 Submission date: 28th February 2014

Component Name

Smart City Resources Adaptation Layer (SCRAL)

Description

The SCRAL, typically running inside the gateways (i.e. co-located inside or close to the
LinkSmart proxy), is the entry point for physical world data from sensors.

The high-level idea of the SCRAL is to provide a “pattern” for integrating heterogeneous devices
inside proxies, supporting self-description, discovery, annotation, etc. of sensors and actuators.

Services

The SCRAL exposes an API which supports:

• Management of heterogeneous IoT device “drivers” (i.e. “integration layers”) running on the

gateway

• Self-description of available devices and the data they can provide

• …

Dependencies

Dependencies toward the virtualization and semantic layer. On the device side. Dependencies

with all the specific integration layers of devices to be supported and also with self-description
capabilities in M2M standards.

Related Task

Task T5.1

Smart City Platform Layer

• Adaption Layer

API Accessibility

Will any services of this component be accessible through the open APIs? Yes.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 47 of 69 Submission date: 28th February 2014

Component Name

TrustManager

Description

The TrustManager enables the definition of trust models and the reasoning about entities according
to these models. It will enable users to define their personal trust metric regarding their data and to

reason about multiple heterogeneous types of trust information. By using this component, non
security experts will have the possibility to easily create secure applications.

Services

Definition of trust information to be used, way it is acquired and model it is enforced by. Provides an

understandable visualization of the running trust management framework and also enables the

reasoning about unexpected entities or trust evidences.

Dependencies

PolicyManager

Related Task

T3.4

Smart City Platform Layer

• Security and Privacy Framework

API Accessibility

• Compose trust model

• Compose trust relationships

• Query trust data

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 48 of 69 Submission date: 28th February 2014

Component Name

EPA – Event Processing Agent

Description

The EPA provides functionality for semantic event processing using a combination of ontology-based
event descriptions and rules for processing. Multiple instances of EPAs can be used to establish an

event processing network (EPN) enabling distributed and layered event management. The primary
functionalities include:

• Receiving events (from different protocols).

• Event rule processing, for instance implementing the filtering, transformation and

aggregation of events.

• Semantic enhancement of events, e.g., by static knowledge in the rules or based upon
previous events, or, based on semantics derived from the event ontology.

• Providing event persistency and storage, for logging and future analysis.

• Routing events to the next level in the Event Processing Network.

• Triggering scheduled rules.

Services

EPA configuration, e.g.,

• peer end-point selection

• mode (pub-sub / push-pull)

Receive/dispatch event

Ontology event resolution

Event rule definition and resolution

Dependencies

• Event Manager

• Ontology Manager

• Services Orchestration Manager

Related Task

T6.3, T6.2

Smart City Platform Layer

• Data Management Framework

� Event Filtering and Context Management

� Event Management and Reasoning

� Information Aggregation, Storage, and Mining

• Ontologies and Semantic Representation Framework

API Accessibility

Services to be included in the SCP event management SDK subset.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 49 of 69 Submission date: 28th February 2014

Component Name

Event Manager

Description

The Event Manager provides publish/subscribe functionality, i.e., the ability for publishers to send a
notification to multiple subscribers while being decoupled from them (in terms of, e.g., not holding

direct references to subscribers). The specific variant of publish/subscribe implemented is topic-
based publish/subscribe where key/value pairs represent events. With this approach, any subscriber

or publisher defines a topic simply by executing the “publish” or “subscribe” actions.

Source: LinkSmart

Services

The Event Manager interface provides the methods for handling the subscriptions, publications,
notifications and storage of events.

• Subscription support allowing clients to subscribe to published events via a topic-based
publish/subscribe scheme

• Publication support allowing client to publish event on topics

• Routing events to subscribed clients

• Event Core manages persistent subscriptions, publication to subscription matching etc.

• Event retry queuing

• Prioritization of events and subscribers

• Failed event storage

Dependencies

Interface to Link Smart Network Manager (e.g., broadcast-, multicast-, or gossiping-based

dissemination).

Related Task

 T6.3

Smart City Platform Layer

• Data Management Framework

� Event Filtering and Context Management

� Event Management and Reasoning

• Communication Management Framework

API Accessibility

Services to be included in the SCP event management SDK subset.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 50 of 69 Submission date: 28th February 2014

Component Name

OntologyManager

Description

The OntologyManager provides the backend for semantic knowledge. It should allow storing,
querying and manipulation of this knowledge.

Semantic knowledge will most probably be some kind of semantic web format such as OWL or just
simple RDF graphs and the storage will be a simple and easy-to-use triple-store.

Services

Services to manage semantic information based on RDF query language such as SPARQL.

The OntologyManager may provide only a SPARQL interface.

More convenient translation to e.g. JSON – if requested by other components – might be

implemented in another component.

Possible interface:

• query(String sparqlQuery)

• update(String sparqlQuery)

• isTypeOf(String entityID, String className)

• …

Dependencies

Might have a dependency to the Virtualization Framework but is not clear right now how that would

look like.

Related Task

T5.3 – Ontologies and Semantic Representation

Smart City Platform Layer

Ontologies and Semantic Representation Framework

API Accessibility

Will any services of this component be accessible through the open APIs?

No.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 51 of 69 Submission date: 28th February 2014

Component Name

Service Orchestration Manager

Description

The Service Orchestration Manager is a generic component that handles the sequencing and
invocation of different types of HTTP-based services. The Service Orchestration Manager also

implements standard HTTP security protocols and also manages cookies/headers which are needed
for communication.

Services

• Initiate a request orchestration and load the supplied parameters.

• Execute a service orchestration Job.

• Run the job and makes the HTTP calls.

• Get transaction time

• …

Dependencies

• Network Manager

Related Task

T7.4 (T6.3)

Smart City Platform Layer

• Data Management Framework

� Information Aggregation, Storage, and Mining

• Ontologies and Semantic Representation Framework

• Communication Management Framework

• Multiservice Federated Networks

API Accessibility

No external API

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 52 of 69 Submission date: 28th February 2014

2. Annex: Reference Architectures

The ALMANAC Smart City Platform (SCP) is based on an Internet of Things (IoT) architecture. For

this reason the architecture development in ALMANAC will build on state of the art IoT system

architectures and reference architectures. For the latter we will particularly look at the IoT
Architectural Reference Model (Bassi et al., 2013).

2.1 Reference architectures

Reference architectures have a long history in IT and telecom systems design. Their main purpose is
to act as common guides to the generation of architecture in specific domains.

Figure 31 A reference architecture provides the instruments and guidelines for domain specific architectures
from which specific system designs are derived.

A Reference architecture serves the following roles and usages,

• A common vocabulary reference for an iCT design domain.

• A structured collection of concepts, models and guidelines for description of domain specific

architectures.

• A collector and generalization of good (possibly best) practice in the domain.

• An instrument for comparisson, explanation and benchmarking of different designs in the

same domain.

There a number of difficulties that face developers and users these frameworks. They tend to
become very complex and cumbersome to apply and also to comply with. Some architectures also

appear too generic for the intended domain.

2.2 Elements of the IoT ARM

The IoT Architectural Reference Model (IoT ARM) provides a collection of generic architectural

concepts and constructs considered applicable to IoT system architectures. The IoT ARM does not
say how to build IoT systems, it is a tool box of concepts, models and recommendations for the

domain of IoT systems and their architectrures. The IoT-A reference model can be used as a

baseline to derive new IoT architectures but also as a reference to explain and compare different
existing IoT system designs.

The reference model framework was developed by the IoT-A5 project and addresses IoT in terms of

an overall IoT Architectural Reference Model including the subsets:

5 http://www.iot-a.eu

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 53 of 69 Submission date: 28th February 2014

• Business and stakeholder scenarios

• An IoT Reference Model

• The IoT Reference Architecture

The first two parts define the objectives, context and concepts of the overall architectural
framework4.

Figure 32 Sub-models of the IoT Reference Model (From (Bassi et al., 2013))

The Reference Architecture is meant as the reference and architectural guideline for building

(instantiating) compliant domain specific IoT architectures from which systems can be designed and

implemented.

2.2.1 IoT-A domain model

An important part of the Reference Model is the definition of the central IoT domain oriented
concepts. The IoT Domain Model names and relates these central concepts in the IoT Reference

Model.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 54 of 69 Submission date: 28th February 2014

Figure 33 UML version of the IoT-A Domain Model

In the IoT-A domain model, real world physical entities have corresponding digital representations in

virtual entities. The physical entities can be subject to monitoring or actuation by means of various
IoT devices. The devices can be attached directly to the physical entities, or the physical entities are

in the operating range of the devices (e.g., through a wireless net). The software part of the device

that provides information on the entity or enables actuation of the device is modelled as a resource.
The functionality provided by the resource is exposed by means if services. Services provide well-

defined and standardised interfaces, hiding the complexity of accessing variety of heterogeneous
resources. The interaction with a physical entity can be accomplished via one or more services

associated with the corresponding virtual entity.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 55 of 69 Submission date: 28th February 2014

Figure 34 Example modelling using the Domain Model.

2.2.2 Information Model

The structuring of the Virtual Entities from the Domain Model is detailed and modelled in the IoT
Information Model. The Information model is intended to meta model those concepts from the

Domain Model that should be explicitly represented and managed in an IoT system.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 56 of 69 Submission date: 28th February 2014

The entityType of a Virtual Entity can possibly refer to an external ontology that can define the set
of attributes, and similarly for the attribute and service types.

Figure 35 Example instantiation of the Information Model

Other more implementation oriented information models include:

• Entity model: The Entity Model specifies which attributes and features of real word objects

are represented by the virtual counterpart. Ontology based on ER/OWL

• Resource model: The Resource Model contains the information that is essential to identify

Resources by a unique identifier and to classify Resources by their type, like sensor,
actuator, processor or tag. Ontology based on ER/OWL and standard ID system, e.g.,

EPC/GS1

• Service description model: Services provide access to Resources and are used to access

information or to control Physical Entities. Service description framework, e.g., USDL

• Event processing model: Describes the objects, rules and agents used to receive, process

and dispatch events in an IoT system.

2.2.3 Functional model

The components of the IoT ARM are organized into groups in the Functional Model. This model is

then the basis for defining the Functional View in the reference architecture.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 57 of 69 Submission date: 28th February 2014

The Application and Device layers are outside the scope of the reference model.

2.2.4 Views in the Reference Architecture

The reference architecture defines the Views, View Points relevant for IoT systems architecture
design. Following the conventional approach the ARM describes three views, each one with a

number of View Points focusing specific aspects of a view,

• An Functional View

• An Information View

• A Deployment and Operation View

The Functional View provides a layered structure of various function groups (e.g., “IoT Service”),

with specific functional components (s.a. “IoT Service resolution” and IoT Service”). The

“Application” and “Device” function groups are considered out of scope in this reference model.

(Layered) Functional view

Functional Components organized in Function Groups describe the Functional View in the ARM. This

is the common two dimensional (almost) layered model of software component abstractions.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 58 of 69 Submission date: 28th February 2014

The IoT Service FG contains IoT services as well as functionalities for discovery, look-up, and name
resolution of IoT Services. It consists of two Functional Components:

• IoT Service

• IoT Service Resolution

An IoT Service exposes one Resource to make it accessible to other parts of the IoT system.
Typically, IoT Services can be used to get information provided by a resource retrieved from a
sensor device or from a storage resource connected through a network. An IoT Service can also be
used to deliver information to a resource in order to control actuator devices or to configure a
resource. Resources can be configurable in non-functional aspects, such as dependability security
(e.g. access control), resilience (e.g. availability) and performance (e.g. scalability, timeliness).

………………..

The main functions of the IoT Service FC are to (1) return information provided by a resource in a
synchronous way, (2) accept information sent to a resource in order to store the information or to
configure the resource or to control an actuator device and (3) subscribe to information, i.e. return
information provided by a resource in an asynchronous way (Bassi et al., 2013).

Information view

Based on the IoT Information Model, this view gives more details about how the relevant

information is to be represented in an IoT system. The concrete representations are not part of this

view.

Deployment and operation view

The following viewpoints are elaborated:

• The IoT Domain Model diagram is used as a guideline to describe the specific application

domain; to this extent UML diagrams can be used to further detail the interaction among the
many elements composing the target application.

• The Functional Model is used as a reference to the system definition; in particular it defines

Functional Groups such as IoT Services and Connectivity groups which are fundamental for
a correct definition of the system.

• Network connectivity diagrams can be used to plan the connectivity topology to enable the

desired networking capability of the target application; at the deployment level, the

connectivity diagram will be used to define the hierarchies and the type of the sub-networks
composing the complete system network.

• Device Descriptions relating device capabilities to the service and resource requirements of

the target system.

2.2.5 Perspectives (architectural qualities) in the IoT ARM

Perspectives represent non-functional requirements on a systems design , which are orthogonal to

the Views of the reference architecture.

The IoT ARM identifies the following perspectives as among the most important for IoT-systems:

• Evolution and Interoperability

• Availability and Resilience

• Trust, Security and Privacy and

• Performance and Scalability

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 59 of 69 Submission date: 28th February 2014

2.3 ALMANAC in relation to IoT ARM

Initial mapping of the ALMANAC IoT architecture to the IoT-A reference model.

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 60 of 69 Submission date: 28th February 2014

3. Annex: State of the art library

In this section a state of the art library on the existing IoT devices, systems, services, research

applications, commercial applications, standards and Fi-WARE components in the context of Smart

Cities in presented.

Document version: [1.0] Submission date: 28th February 2014

3.1 Devices

Examples: a waste sensor, a water meter, a mobile phone, ...

Name Reference Description Relevance

Smart Bin
Producer

websitehttp://smartbin

.com/how-it-

works/smartbin-

sensors.html6

A smart bin sensor: it can monitor the fill
level and report via GSM.

It could be considered for testing e.g. in a
proof-of-concept (Cost and availability to
be verified).

Postscapes IoT
Producer

website7http://postsca

pes.com/internet-of-

things-hardware

List of prominent IoT hardware Helps with technology scouting about IoT
hardware blocks

Smart irrigation
controllers Producer website8 List of smart irrigation controllers Automatic control of water use. Could be

influenced by current water situation at
city level (ALMANAC water use case)

Enevo Smart
Waste Sensor

Producer website9 Waste container monitoring service ALMANAC could target this example for the
waste management use case

Xtreme RFID Producer website10 Asset tracking for Municipal Solid Waste11 12 Consider compatibility for waste
management use case

Water and leak
detection sensors

Website13 Smarthome: Home automation super store
Many off-the-shelf devices can be found in
this website

Commercial solutions for water leak and
detection, that could be used as an
inspiration for the water use case.

(Underground
automated)
vacuum waste
collection
systems

Website14 Waste deposited in inlets then sucked away
to compacting facilities through underground
pipes using vacuum conveying technology

AVAC waste collection solution (not really a
device, but a complex future solution
already implemented)

6 http://smartbin.com/how-it-works/smartbin-sensors.html
7 http://postscapes.com/internet-of-things-hardware
8 http://postscapes.com/smart-irrigation-controllers
9 http://www.enevo.com/
10 http://www.xtremerfid.com/applications/municipal-solid-waste
11 http://www.xtremerfid.com/news/xtreme-rfid-helps-cincinnati-grand-rapids-enhance-recycling-and-waste-collection-operations
12 http://www.rfidarena.com/2012/9/27/a-push-towards-recycling-with-rfid.aspx
13 http://www.smarthome.com/_/Sensors/Water_Leak_Detection/_/L/1SD/nav.aspx
14 http://www.thecitiesoftomorrow.com/solutions/waste/solutions/vacuum-waste-collection-systems

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 62 of 69 Submission date: 28th February 2014

Urbiotica sensors
Producer website15 Waste Container Fill Level Sensor, Air Quality

Sensor and Wide range of environmental
sensors.

A very interesting presentation on the
combined used of this sensors for the
waste management problem can be seen
here16.

Insteon sensors
Producer website17 A wide variety of sensors for the following

applications: Remote control lighting, Control
and status on smartphones and tablets,
Remote control heating and air conditioning
(HVAC), Scene lighting, Timers, Occupancy
sensing, Leak sensing, Humidity sensing and
control, Garage door sensing and control,
Email and text (SMS) alerts, Access control
(e.g. door locks), Audio-video control,
Appliance management, Irrigation control,
Energy measurement, Energy savings.

Useful for the waste and water use cases,
specially: Occupancy sensing, Leak
sensing, Humidity sensing and control.

3.2 Systems

Examples: a waste management system, a water monitoring infrastructure, etc.

Name Reference Description Relevance

IBM Intelligent
Water

Website Leafet (PDF)18 Water system monitoring system.
"The solution uses advanced data
management, visualization, correlation and
collaboration technologies to transform the
vast amounts of disparate data received from
various devices (including metering systems),
assets, systems and stakeholders into
actionable information that can guide
executive and operational decisions."

Example/Competitor to water management
application.
Could also provide some ideas for the
water management application.

EmNet
(Company)

Website

articlehttp://txchnolog

ist.com/post/5033695

Sewer system monitoring, analysis and
control optimization.
"EmNet's Real Time Intelligence and
Optimization technology helps utilities

Example/Competitor to water management
application.
Could also provide some ideas for the
water management application.

15 http://www.urbiotica.com/products-and-solutions/
16 http://www.metropolis.org/sites/default/files/news/urbiotica-2.pdf
17 http://www.insteon.com/index.html
18 http://public.dhe.ibm.com/common/ssi/ecm/en/gws03010usen/GWS03010USEN.PDF

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 63 of 69 Submission date: 28th February 2014

1628/going-against-

the-flow-green-tech-

sensors-and19

maximize existing and planned resources to
minimize overflows and save money. EmNet
combines the use of traditional hydraulic
modelling and novel real time information
technology to deliver actionable insight."

Sewage Grid:
Drifting Sensors
that Monitor the
Wastewater
Collection
System (Scientifc
paper)

Sewage grid document20
They use wireless floating sensors to detect
leakage in waste water systems.

Innovative solution to water system
monitoring.

SeWatch -
wastewater and
sewage wireless
monitoring
system

Company: Telem
atics Wireless21

Website22
Wireless monitoring system for sewers

reporting discharge or overflow. It includes
• Water-level sensors for sewer system

manholes.
• Remote Terminal Units (RTU) for data

capture with built-in wireless
communications.

• Primary battery or solar-powered
wireless relays/nodes,
reader/gateway unit for interfacing to
a Network.

• A monitoring and Controlling
Management application running on
PC or server, which alerts on screen
or via SMS about manhole overflow
and spillovers.

Inspiration for the water management
application.
System example from the industry.
Could be helpful to see which kinds of
hard- and software they use.

Postscapes IoT
City

Website23http://postsc

apes.com/connected-

List of projects using IoT for city applications Helps with technology scouting about IoT
for cities

19 http://www.emnet.net/index.php/whatwedo
20

https://confluence.fit.fraunhofer.de/confluence/login.action%3bjsessionid=CD08ED1A4382C4F9E19C41EF401F233A?os_destination=%2Fnotpermitted.action%3Fversion%3D1%26modif
icationDate%3D1391184940244%26api%3Dv2

21 http://www.telematics-wireless.com/index.php?page_id=1
22 http://www.telematics-wireless.com/index.php?page_id=138

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 64 of 69 Submission date: 28th February 2014

city
Enevo ONe
Collect

Producer website24 Waste monitoring solution A competing solution to the waste
management use case

Hitachi's water
infrastructure
solution

Producer website25
A water infrastructure solution: water
treatment system, an information control
system and an energy saving system.

The water distribution control system could
provide some ideas for a new approach on
water management: the electric power
load related to distribution is reduced, and
pressure distribution is corrected for each
zone

Telefonica
SmartCity
overview

Producer website26 Smart cities platform for a better world based
on m2m technology

Not much information about the platform
itself, but the way they present the use
cases is very interesting (see the picture
"Discover all of them in our Smart City"
more specifically click on the sections
about watering management and waste
management)

3.3 Services

Examples: a Cloud-provisioning service, on-line weather forecast, ...

Name Reference Description Relevance

Xively (formerly
Pachube.com)

Producer website27 Cloud service to upload and process IoT data Example of data aggregation service for
inspiration. Consider partial compatibility

IFTTT
Producer website28

If This Then That: Channels, triggers,
actions... E.g. with SmartThings29

End-user empowerment

Node-RED
Producer website30 A visual tool for wiring the Internet of Things.

Built on top of Node.js. Users can create data
flows from IoT Devices to e.g. Twitter in a

 End-user empowerment

23 http://postscapes.com/connected-city
24 http://www.enevo.com/one-collect/
25 http://www.hitachi.com/products/smartcity/smart-infrastructure/water/solution.html#plink05
26 https://m2m.telefonica.com/discover-m2m/smart-cities
27 https://xively.com/showcase/
28 https://ifttt.com/wtf
29 http://smartthings.com/news/ifttt/
30 http://nodered.org

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 65 of 69 Submission date: 28th February 2014

browser-based editor and deploy on small
devices such as Raspberry Pi. ´

Google App
Engine

Producer website31
Google's Platform-as-a-Service. Provides
storage, load balancing and other services.

Cloud provisioning

Windows Azure
Producer website32 Microsofts Platform-as-a-service. Provides

storage, load balancing and other services.
Cloud provisioning

3.4 Research Applications

Examples: experiences from on-going projects, etc.

Name Reference Description Relevance

EU projects on
IOT

EU Project Website33 CORDIS search Live list of projects regarding IoT funded by
the European Commission

SmartSantander EU Project Website34 EU project: world city-scale experimental
research facility in support of typical
applications and services for a smart city

Could help testing some ALMANAC
concepts

URB-Grade EU Project Website35 EU project: helps policy-makers to make
better decisions in terms of cost and energy
efficiency and to increase citizen awareness
of how to save energy and derive a greater
proportion of energy from renewable sources.
See also the related projects http://urb-
grade.eu/related-projects/

Citizen awareness, decision making

IoT.est EU Project Website36 EU project: Internet of Things Environment
for Service Creation and Testing

Abstraction, testing, semantic annotations

Mobosens Website37 US research project, which provides citizens
with a platform for collecting and sharing
environmental data, from stream quality to
drinking water safety

End-user involvement. Inspiration for the
use-case about water

31 https://cloud.google.com/products/app-engine/
32 http://www.windowsazure.com/en-us/
33 http://cordis.europa.eu/projects/index.cfm?fuseaction=app.search&TXT=iot
34 http://www.smartsantander.eu/
35 http://urb-grade.eu/
36 http://ict-iotest.eu/iotest/
37 http://nanobionics.mntl.illinois.edu/mobosens/

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 66 of 69 Submission date: 28th February 2014

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 67 of 69 Submission date: 28th February 2014

3.5 Commercial Applications

Examples: experiences from solutions that are already on the market or close to be launched

Name Reference Description Relevance

Smart Dutch
Rubbish Bins -
M2M-enabled

News press from techweekeurope.co.uk38 A large-scale pilot (6000
Smart Bins) in Groningen
(NL).
Citizen can unlock bins
using an RFID badge +
sensors are used to monitor
the fill level.

It could be used as
inspiration for the Smart
Waste use case.
Smart Bin could be
considered for testing (if
available on the market)

 HydroPoint
WeatherTrak

 http://www.hydropoint.com/products/outdoor-
solutions/

 Measurement, irrigation
control based on weather
data, equipment for
sensors, wired link &
wireless comm., central
adm server

 Competing system

Sensus
Intelligent
Water
management
soluions

http://sensus.com/web/usca/products/water

Metering, Water system-
level network solutions,

inspirational

Watersave
SmartMeter

https://www.watersave.com.au/smartmeter/commercial

Australian Smart Water
Solution

Inspirational – system
descriptions.
Management, system
structure, Metering citizen
interface

IntelliH2O
smart water
meter

http://www.intelli-h2o.com/products/technology American – M2M wireless
connectionand
Management solutions to
arrive

3.6 Standards

Examples: sections of standards which cover some feature relevant for ALMANAC

38 http://www.techweekeurope.co.uk/news/m2m-bins-tell-council-when-they-are-full-92401

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 68 of 69 Submission date: 28th February 2014

Name Reference Description Relevance Proposed

by

OGC Sensor Web
Enablement
(framework)

OGC Sensor web
enablement Group39

interoperability interfaces and metadata
encodings that enable real time integration of
heterogeneous sensor webs into the
information infrastructure

Candidate framework for the various
system interfaces in the ALMANAC
architecture

ALEX

W3C Semantic
Sensor Network

W3C Incubator Group
Report40

Ontology to describe sensors and sensor
networks for use in sensor network and
sensor web applications

Candidate standard for the ontology needs ALEX

 ETSI M2M ETSI M2M website41
 ETSI M2M is the European standard for M2M

(Machine to Machine) applications
Used in the ALMANAC architecture and
developments

TIL

 OneM2M One M2M standards
website42

OneM2M will be the worldwide standard for
M2M (Machine to Machine) applications. It is
going to include also ETSI. M2M

When available considered in the
ALMANAC architecture and developments

TIL

CDMI ISO standards
catalogue43

Cloud Data Management Interface (CDMI),
ISO/IEC 17826:2012, specifies the interface
to access cloud storage and to manage the
data stored therein.

WP6 cloud based storage management. CNET

3.7 Fi-WARE components

Examples: sections of generic enablers from FIWARE which are useful for us. (Added as a decision during the workshop on Dec. 13 in
Stockholm)

Name Reference Description Relevance Proposed

by

Object Storage FI-WARE
Catalogue44

Provides robust, scalable object storage functionality through
an open, standardised interface: it exposes a CDMIinterface on
top of OpenStack Swift.

WP6 (cloud based) Storage
Management

CNET

Cosmos - Big
Data analysis

FI-WARE
Catalogue45

Implementation of the Big Data GE, based on Hadoop
ecosystem, including support for MapReduce

Test of usability of Hadoop &
Map Reduce in ALMANAC data

CNET

39 http://www.opengeospatial.org/projects/groups/sensorwebdwg
40 http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
41 http://www.etsi.org/technologies-clusters/technologies/m2m
42 http://www.onem2m.org/
43 http://www.iso.org/iso/catalogue_detail.htm?csnumber=60617
44 http://catalogue.fi-ware.eu/enablers/object-storage-ge-fi-ware-implementation
45 http://catalogue.fi-ware.eu/enablers/bigdata-analysis-cosmos

ALMANAC D3.1.1 System Architecture Analysis & Design Specification 1

Document version: [1.0] Page 69 of 69 Submission date: 28th February 2014

management
Wire Cloud FI-WARE

Catalogue46
FI-WARE Mashup
YouTube link47

Wirecloud is an open source, reference implementation of the
FIWARE Application Mashup. Creating mash-ups by wiring
existing components/widgets. REST

Consider for end-user creation of
mash-up UIs to ALMANAC
platform services.

CNET

Device
Management

FI-WARE
Catalogue48

A REST API for M2M application developers and a device
communication API, receiving ETSI M2M events (and other
protocols) together with historic info.

WP4 to decide on relevance CNET

46 http://catalogue.fi-ware.eu/enablers/application-mashup-wirecloud
47 http://www.youtube.com/watch?v=yzQqstBAUeo#t=1
48 http://catalogue.fi-ware.eu/enablers/backend-device-management

